期刊文献+

基于网络社区模块结构的特征选择性能评价 被引量:2

Feature Selection Measurement Approach Based on Community Modularity Structure
下载PDF
导出
摘要 利用网络社区模块结构作为特征选择的度量指标,给出了一种基于全局拓扑结构的特征选择性能评价方法。对一种基于免疫学原理的数据压缩和特征提取模型——人工免疫网络进行了验证,通过对数据特征提取前的抗原数据网络和特征提取后的记忆网络的网络社区模块结构的对比,达到对人工免疫网络(aiNET)的特征提取性能评价的目的。实验结果证实了人工免疫网络模型可以保持网络拓扑结构上的稳定性,验证了利用网络社区结构作为特征选择度量的合理性。 Taking community structure as measurement index for feature selection, a new feature selection measure approach based on modularity coefficient community structure is proposed. Artificial immune network is a type of competitive learning algorithm which is capable of extracting relevant features contained in dataset. It uses the "internal image" memory network to eliminate data redundancy and feature extraction. The new approach is used to analyze the community structure between the input pattern (antigen) and memory network. Experiment study shows the newly approach is proved reasonable and viable.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第12期16-18,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60305007)
关键词 特征选择性能评价 网络社区结构 人工免疫网络 Feature selection measurement Community structure Artificial immune network
  • 相关文献

参考文献5

  • 1边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,2001.
  • 2Bassat M.Pattern Recognition and Reduction of Dimensionality[Z]// Krishnaiah P R,Kanal L N.Handbook of Statistics.1982.
  • 3Torkkola K.Nonlinear Feature Transforms Using Maximum Mutual Information[C]//Proceedings of the International Joint Conference on Neural Networks.2001.
  • 4Girvan M,Newman M E J.Community Structure in Social and Biological Networks[C]//Proceedings of the National Academy of Science,USA.2002.
  • 5L N de Castro,Timmis J.Artificial Immune Systems as a Novel Soft Computing Paradigm[J].Soft Computing,2003,7(8):526-544.

共引文献1

同被引文献16

  • 1Wu Fang, Huberman B A. Finding Communities in Linear Time: A Physics Approach[J]. The European Physics Journal B, 2004, 38(2): 331-338.
  • 2Newman M E J, Girvan M. Finding and Evaluating Community Structure in Networks[EB/OL]. (2006-10-23). http://link.aps.org/ abstract/PRE/v69/e026113.
  • 3Cohen W W. Enron Email Dataset[EB/OL]. (2005-04-04). http://www.cs.cmu.edu/%7Eenron/.
  • 4Sago Networks Data Center. The Prefuse Visual Toolkit[EB/OL]. (2007-08-23). http://prefuse.org/.
  • 5Girvan M, Newman M E J. Community Structure in Social and Biological Networks[J]. PNAS, 2002, 99( 12): 7821-7826.
  • 6Bagrow J P, Bollt E M. A Local Method for Detecting Communities[EB/OL]. (2007-06-25). http://link.aps.orglabstracll PRE/v72/e046108.
  • 7Duch J, Arenas A. Community Detection in Complex Networks Using Extremal Optimization[EB/OL1. (2007-11-25). http://link.aps orglabstractlPRE/v72/e027104.
  • 8王林,戴冠中.基于复杂网络社区结构的论坛热点主题发现[J].计算机工程,2008,34(11):214-216. 被引量:23
  • 9王林,戴冠中,赵焕成.一种新的评价社区结构的模块度研究[J].计算机工程,2010,36(14):227-229. 被引量:9
  • 10林友芳,王天宇,唐锐,周元炜,黄厚宽.一种有效的社会网络社区发现模型和算法[J].计算机研究与发展,2012,49(2):337-345. 被引量:51

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部