摘要
提出了一种新的基于局部特征统计的红外图像小目标检测方法。对图像的局部区域灰度概率进行统计,通过阈值分割去除图像中缓慢变化的背景点和弱的边缘点,得到包含强的边缘点、噪声点和目标点的残留图像,利用残留图像内各点的局部方向信息测度的差异,进一步剔除强的边缘点。通过多帧累加判决的方式将真实目标从噪声点中检测出来。实验表明,该方法能够极大地减少候选目标点数,准确有效地检测复杂自然背景中的红外运动弱小目标,适合于实时和多目标的检测。
A method based on local grey-level probability analysis and orientation information measurement is presented to detect dim targets in IR images. Local grey-level probability is computed and used to remove the slowly-changing background and weak edges on the bases of threshold segmentation, as a result, the remaining image composed of strong edge points, noise points and targets is obtained. The difference of the orientation information at the points of the remaining images is utilized to remove the strong edge points. True targets are separated from noise points by multi-frames cumulating. Simulation results indicate that this approach can reduce the number of possible targets and detect small moving IR targets in complex natural background with high efficiency and veracity. It can be used in real-time and multi-targets detection.
出处
《计算机工程》
CAS
CSCD
北大核心
2007年第12期19-21,24,共4页
Computer Engineering
关键词
局部灰度概率
方向信息测度
红外小目标检测
Local grey-level probability
Orientation information measurement
Dim IR targets detection