期刊文献+

基于遗传优化神经网络的电子鼻对可乐的检测 被引量:8

Detection of Cola Using Electronic Nose Based on GA-BP Network
下载PDF
导出
摘要 采用遗传学习算法和误差反向传播(BP)算法相结合的混合算法来训练前馈人工神经网络,从而提高神经网络的收敛质量和收敛速度,并将此算法运用到电子鼻对可乐的检测上.与经典BP网络及附加动量项BP网络的训练与预测进行了比较,结果显示:遗传优化BP算法具有预测精度高、收敛速度快及运行时间短的优点,是一种快速、可靠的方法. The combination of genetic algorithm and back propagation algorithm for training the neural network is described. It can improve the search efficiency and realize global optimization, and this GA-BP algorithm is employed to detect the cola by electronic nose. Compared with the standard back propagation algorithm and its improved method, the result shows the GA-BP algorithm has good prediction precision, high convergent speed and less running time, and it is a fast and credible method.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第6期1211-1214,共4页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目资助(3057746) 教育部新世纪优秀人才支持计划项目资助(NET-04-0544)
关键词 可乐 电子鼻 BP神经网络 遗传算法 cola electronic nose BP neural network genetic algorithm
  • 相关文献

参考文献11

  • 1Julian W Gardner,Philip N Bart let.Electronic Nose:Principles and Applications[M].Oxford University Press,1999:245.
  • 2Gardner JW,Bartlett N.A Brief History of Electronic Nose[J].Sensors and Actuators B,1994(18-19):211-220.
  • 3袁承任.人工神经元网络及其应用[M].北京:清华大学出版社,1999..
  • 4David E Goldberg.Genetic Algorithm in Search,Optimization and Machine Learning[M].Reading,MA:Addison-Wesley,1989.
  • 5黄祖刚,李建平,何秀丽,高晓光.用电子鼻鉴别卷烟的方法[J].传感器技术,2004,23(6):62-65. 被引量:26
  • 6邹小波,方如明,黄勇强,吴守一,蔡健荣.遗传算法在智能气体检测装置中的应用研究[J].信号处理,2001,17(5):463-467. 被引量:6
  • 7邹小波,赵杰文,潘胤飞,黄星奕.基于遗传RBF网络的电子鼻对苹果质量的评定[J].农业机械学报,2005,36(1):61-64. 被引量:26
  • 8李人厚 张平安等译.精通MATLAB综合辅导与指南[M].西安:西安交通大学出版社,1998..
  • 9张覃轶,谢长生,阳浩,王林,张顺平.电子鼻模式识别算法的比较研究[J].传感技术学报,2005,18(3):576-579. 被引量:29
  • 10Bahram Ghaffarzadeh K.Using Neural Network and Genetic Algorithm to Enhance Performance in an Electronic Nose[J].IEEE Transactions on Biomedical Engineering,1999,46(4):429-439.

二级参考文献29

  • 1康昌鹤 唐省吾.气、湿敏感器件及其应用[M].北京:科学出版社,1985.64-69.
  • 2[5]Gardner J W, Bartlett P N. Performance definition and standardizations of electronic noses [ J ]. Sensors & Actuators B, 1996,33:60-67.
  • 3[6]Lezzi A M,Beretta G P,Comini E,et al. Influence of gaseous species transport on the response of solid state gas sensors within enclosures[ J]. Sensors & Actuators B,2001,78 (1 -3) :144-150.
  • 4[7]Shurmer H V , Gardner J W, Chan H T. The application of discrimination techniques to alcohols and tobaccos using tin - oxide sensors[ J]. Sensors & Actuators,1989, (18) :361-371.
  • 5GBl0651--89.鲜苹果分级标准.[S].,..
  • 6GoPel W,Schierbaum K D.SnO2 sensors:current status and future prospects.Sensors and Actuators B,1995(26—27):1-12.
  • 7Liobet E,Brezmes J,Vilanova K,et a1.Qualitative and quantitative analysis of volatile organic compounds using transient and steady-state response of a thick-film tin oxide gas sensor array.Sensors and Actuators B,1997,41(1):13-21.
  • 8Corrado D N,Gudrun O,et a1.Comparison and integration of different electronic noses for freshness evaluation of cod-fish fillets.Sensors and Actuators B,2001,77(2):572-578.
  • 9Yea B.Osaki T,Sugahara K,et a1.The concentration-estimation of inflammable gases with a semiconductor gas sensor utilizing neural networks and fuzzy inference.Sensors and Actuators B,1997,41(2):121-129.
  • 10Holland J H.Genetic algorithms.Scientific American,1992,256(1):66-72.

共引文献98

同被引文献92

引证文献8

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部