期刊文献+

传感器网络中的分布式粒子滤波被动跟踪算法比较研究 被引量:8

Comparison of Decentralized Particle Filter Algorithms in Sensor Networks for Passive Tracking
下载PDF
导出
摘要 为提高无线传感器网络(WSN)中的被动跟踪性能,并减少通信量,提出了两种分布式粒子滤波方法.在使用动态分簇结构的基础上,采用信息粒子滤波器(IPF)技术,以簇头作为簇的处理中心,接收来自子节点的观测量,形成本地估计,再将并行粒子滤波器(PPF)将粒子集被分成多个小的子集,分配到簇中的各子节点,完成并行进行粒子滤波过程.在通过计算机仿真的基础上,进行了跟踪和能耗的对比分析研究,结果表明IPF和PPF不仅提高了跟踪精度,而且减少了WSN中的通信能量开销. Two decentralized particle filtering methods for improving the passive tracking performance and reducing communication amount in wireless sensor networks (WSN) (are) proposed. Based on dynamic clustering, the information particle filter receives the observations from children nodes and formulates the local estimate with the cluster head as the processing center. The parallel particle filter divides the particle set into several subsets, which are distributed to children nodes, and the particle filtering processing runs parallel. Finally, computer simulation is conducted to compare tracking performance and to analyze communication amount. Simulation results show not only the tracking performance is improved, hut also the communication costs are reduced in WSN.
出处 《传感技术学报》 CAS CSCD 北大核心 2007年第6期1344-1348,共5页 Chinese Journal of Sensors and Actuators
基金 海军工程大学自然科学基金资助"粒子滤波在水下机动目标跟踪中的应用"(HGDJJ06015)
关键词 传感器网络 粒子滤波 并行处理 sensor networks particle filter parallel processing
  • 相关文献

参考文献9

  • 1Chong C Y,Kumar S P.Sensor Networks:Evolution,Opportunities,and Challenges[C]// Proceedings of the IEEE,2003,91:1247-1256.
  • 2Gordon N J D Salmond J,Smith A F.Novel Approach to Nonlinear Non-Gaussian Bayesian State Estimation[C]//IEEProceedings-F,1993:107-113.
  • 3Arulampalam S,Maskell S.A.Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking[J].IEEE Transactions of Signal Processing,2002:174-188.
  • 4Chong C Y,Zhao F,Mori S.Distributed Tracking in Wireless Ad hoc Sensor Networks[C]//Proceedings of the Sixth International Conference of Information Fusion,2003:1247-1256.
  • 5Efe M,Atherton D P.Maneuvering Target Tracking Using Adaptive Turn Rate Models in The Interacting Multiple Model Algorithm[C]//Proceedings of the 35th Conference on Decision and Control,Kobe,Japan,1996:51-56.
  • 6Sheng X,Hu Y-H,Ramanathan P.Distributed Particle Filter with GMM Approximation for Multiple Targets Localization and Tracking in Wireless Sensor Network[C]//Fourth International Symposium on Information Processing in Sensor Networks,2005,181-188.
  • 7Tafe T G.Target Localization from Bearings-only Observations[J].IEEE Trans on AES.1996.31(1):2-10.
  • 8Anders H,Jan H.A Nearly Unbiased Inherently Stable Bearings-Only Tracker[J].IEEE Journal of Oceanic Engineering,1993,18(2):138-141.
  • 9Guerci J R.A Method for Improving Extended Kalman Filter Performance for Angle Only Passive Ranging[J].IEEE Trans.AES,1994.30(4):1091-1093.

同被引文献64

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部