期刊文献+

混合智能系统R-FC-DENN及其实现

Hybrid Intelligent System R-FC-DENN and Its Implementation
下载PDF
导出
摘要 混合智能系统已成为人工智能的一个重要研究方向,本文依据认知心理学和模型集成理论,构建了集粗糙集理论、聚类理论、模糊逻辑理论、遗传算法理论、人工神经网络理论于一体的混合智能系统R-FC-DENN,该系统在数据的空间效能方面和算法的时间效率等方面比已有算法有较大的改进。以混合智能系统R-FC-DENN为例,基于Rosetta和Matlab 6.5平台,还开发了混合智能系统工具箱RFCDENN-Tool,为相关研究打下坚实的基础。 The hybrid intelligent system has become an important research direction of artificial intelligence. Based on the cognitive psychology and aggregative model theory, a new hybrid intelligent system R-FC-DENN is proposed based on rough set, clustering theory, fuzzy logic, genetic algorithm and artificial neural network. By means of clustering and simplifying the original dataset, the system can enhance training efficiency and robustness. With the hybrid intelligent system R-FC-DENN as an example, a toolbox RFCDENN-Tool is developed based on Rosetta and Matlab 6.5, which may provide a basis for related researches.
出处 《科技导报》 CAS CSCD 2007年第11期69-73,共5页 Science & Technology Review
基金 国家自然科学基金项目(70571016 70471011)
关键词 混合智能系统 人工神经网络 粗糙集 模糊聚类 遗传算法 hybrid intelligent systems artificial neural network rough set fuzzy clustering genetic algorithm
  • 相关文献

参考文献12

  • 1MINSKY M.Logic versus analogical or symbolic versus connectionist or neat versus scruffy[J].Al Magazine,1991,12(2):35-51.
  • 2MEESAD P.A hybrid intelligent system and its application to medical diagnosis[D].Oklahoma:Oklahoma State University,2002.
  • 3LANGARI R,WON J.Intelligent energy management agent for a parallel hybrid vehicle-Part I:System architecture and design of the driving situation identification process[J].IEEE Transaction on Vehicular Technology,2005,54(3):925-934.
  • 4HAMEDI M.Intelligent fixture design through a hybrid system of artificial neural network and genetic algorithm[J].Artificial Intelligent Review,2005,23(3):295-311.
  • 5张文修 吴伟志 梁吉业.粗糙集理论与方法[M].北京:科学出版社,2003.107-112.
  • 6WANG X,YANG J.Feature selection based on rough sets and particle swarm optimization[J].Pattern Recognition Letters,2007,28(4):459-471.
  • 7黎俊锋,朱锋峰.基于样本密度的FCM改进算法[J].科学技术与工程,2007,7(4):636-638. 被引量:12
  • 8CHIU S.Fuzzy model identification based on cluster estimation[J].Journal of Intelligent and Fuzzy Systems,1994,2(3):267-278.
  • 9王刚,高阳,夏洁.基于差异进化算法的人工神经网络快速训练研究[J].管理学报,2005,2(4):450-454. 被引量:10
  • 10YAN J Y,LING Q,SUN D M.A differential evolution with simulated annealing updating method[J].In International Conference on Machine Learning and Cybernetics,2006:2103-2106.

二级参考文献24

  • 1张新波.两阶段模糊C-均值聚类算法[J].电路与系统学报,2005,10(2):117-120. 被引量:21
  • 2梁化楼,戴贵亮.人工神经网络与遗传算法的结合:进展及展望[J].电子学报,1995,23(10):194-200. 被引量:71
  • 3焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995..
  • 4[1]袁勇任.人工神经元网络与应用[M].北京:科学出版社,2000.
  • 5[2]Rumellhart D E,Mc Clleland J L.The PDP Research Group. Parallel Distrbuted Processing[M]. Cambridge:MIT Press,1988.
  • 6[6]Babu B V,Chaturvedi,Gaurav. Evolutionary Computation strategy for optimization of an Alkylation Reaction[J]. Proceedings of International Symposium & 53rd Annual Session of IIChE (CHEMCON-2000), Science City, Calcutta, 2000:18~21
  • 7[8]UCI Machine Learning Repository[EB]. http://www.ics.uci.edu/~mlearn/MLRe pository.html.2004.
  • 8[1]Selim S Z,Alsultan K.A simulated annealing algorithm for the clustering problem.Pattern Recognition,1991 ;24 (10):1003-1008
  • 9[4]Pal N R,Pal K,Bezdek J C.A mixed c-means clustering model.In:Proc 6th IEEE Conf Fuzzy Syst,1997:11-21
  • 10[5]Chintalapudi K K,Kam M.A noise-resistant fuzzy c-Means algorithm for clustering.In:Proc 7th IEEE Conf Fuzzy Syst,1998:1458-1463

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部