期刊文献+

基于LMS算法的自适应滤波器在水声信号处理中的应用 被引量:5

Application of Adaptive Filter in the Underwater Acoustic Signals Processing Based on LMS Algorithm
下载PDF
导出
摘要 针对水下环境通常是一种时变的强噪声信道,而采用传统的滤波器难以检测到有用信号的特点,利用LMS自适应谱线增强算法,构造了自适应滤波器。通过理论分析与仿真实验对该增强器进行了研究。结果表明:该谱线增强器收敛后均方误差小,提高了增强谱线和抑制非高斯噪声的能力。 Underwater acoustic environment is usually time-varying with strong noise. So it is difficult to detect the useful signal by using conventional filters. The Adaptive Line Enhancer has been developed based on the LMS algorithm. Theoretical analysis and simulation results have shown that this ALE has the excellent performances in enhancing line spectrum signals, suppressing non-gaussian noise , and low mean square eror when it converges.
出处 《科学技术与工程》 2007年第12期2830-2833,共4页 Science Technology and Engineering
关键词 自适应谱线增强器 均方误差 LMS算法 功率谱密度 adaptive line enhancer(ALE) mean square error(MSE) least mean square (LMS) algorithm density ( PSD )
  • 相关文献

参考文献2

二级参考文献9

  • 1陈明.随机过程[M].南京:东南大学,1999.41-56.
  • 2B.Widrow S.D.Stearns.自适应信号处理[J].成都:四川大学出版社,1989,11.75-82.
  • 3[1]Widrow B. Adaptive Noise Cancelling: Principles and Applications. Proc of the IEEE, 1975, 63(12): 1692~1716
  • 4[2]Zerguine A, Cowan C F N, Bettayeb M. Adaptive Echo Cancellation Using Least Mean Mixed-Norm Algorithm. IEEE Trans on Signal Processing,1997, 45(5):1340~1342
  • 5[3]Nikias C L, Petropulu A P. Higher-Order Spectral Analysis: A Nonlinear Processing Framework. Englewood Cliffs, NJ: Prentice-Hall, 1993
  • 6[4]Mendel J M. Tutorial on Higher-Order Statistics(Spectra) in Signal Processing and Systems Theory: Theoretical Results and Some Applications. Proc of IEEE, 1991, 79(3): 278~305
  • 7[5]Anderson J M, Giannakis G B. Harmonic Retrieval Using Higher-Order Statistics: A Deterministic Formulation. IEEE Trans on Signal Processing, 1995, 43(8): 1880~1889
  • 8[6]Ibranim H M, Gharieb R R. A Higher Order Statistics-Based Adaptive Line Enhancement. IEEE Trans on Signal Processing, 1999, 47(2): 527~531
  • 9侯宝春,惠俊英,蔡平.用相干累加算法改进ALE的性能[J].声学学报,1991,16(1):25-30. 被引量:7

共引文献12

同被引文献32

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部