期刊文献+

整体式载体的分形研究

Research on Fractal of Monolithic Carrier
下载PDF
导出
摘要 整体式Al2O3载体结构实测结果表明,虽然不同组分、不同条件下形成的块体具有不同的结构,但孔隙尺寸均满足分形标度律,是一种分形。本文构造了整体式载体分形体,提出了整体式载体的一种分形模型——蜂窝分形体,导出了关联表面积和体积增量的分形表达式,并分析了表面分维数的几何意义。本文在测得载体孔径分布的基础上,利用该模型的表面积与体积增量分形表达式,从压汞法的实验数据,研究了整体式载体分维数:实验得到的比表面积、体积增量及样品制备条件、孔隙尺寸等性能与分维数的关系,与模型提出的结论符合得很好,此方法对优化制备条件与块状载体的性能有重要意义。 The structure of monolithic Al2O3 carrier has been distinctly known by determining. Although there is the different structure for preparated carrier under different components and conditions, pore size is all according with the scale law of fractal, and is a kind of fractal. This paper constructs fractal of monolithic carrier , gets its model Honeycomb Fractal, derives expression formula of relating surface erea and volume increment, and analyzes meanings of surface fractal dimension. Moreover fractal dimension of carrier has been studied on the foundation of measuring pore diameter distribution, and the relationship of fractal dimension with preparative conditions, pore size and other performances of carrier has been detailed investigated. This method has important meaning to optimize operative condition and properties of carrier.
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2007年第3期345-348,共4页 Journal of Materials Science and Engineering
关键词 Al2O3载体 整体式 分形 蜂窝分形体 Al2O3 carrier monolithic fractal
  • 相关文献

参考文献9

  • 1Mandelbrot B B.The Fractal Geometry of Nature[M].San Francisco:Freeman Co.,1982,144~146.
  • 2Friesen W I,Mikular R J.Fractal Dimensions of Coal Particles[J].J.Colloid Interface Sci.,1987,120(1):263~271.
  • 3Neimark A V.Calculating Surface Fractal Dimensions of Adsor-bents[J].Adsorption Sci.and Techno1.,1990,7(4):2 10L~219.
  • 4Pfeifer P.Structure Arialysis of Porous Solids From Presorbed Films[J].Langrnuir,1991,7:2833~2835.
  • 5Neimark A V A.New Approach to the Determination of the Surface Fractal Dimension of Porous Solods[J].Physica A,1992,19l:258~260.
  • 6Zhang B,Li S.Determination of the Surface Fractal Dimension for Porous Media by Mercury Porosimetry[J].Ind.Eng.Chem.Res.,1995,34:1383~1386.
  • 7Wang E,Li S.Determination of the Surface Fractal Dimension for Porous Media by Capillary Condensation[J].Ind.Eng.Chem.Res.,1997,36:1598~1602.
  • 8湛建阶 陈朝辉.整体式Al2O3载体的一种分形方法.化学研究与应用,2006,9.
  • 9马兴华,王鲁英,完明睿,邓彤.颗粒孔结构的积木分形模型[J].过程工程学报,2002,2(5):385-391. 被引量:5

二级参考文献9

  • 1Mandelbrot B B. The Fractal Geometry of Nature [M]. San Francisco: Freeman Co., 1982. 144-146.
  • 2Friesen W I, Mikular R J. Fractal Dimensions of Coal Particles [J]. J. Colloid Interface Sci., 1987, 120(1): 263-271.
  • 3Neimark A V. Calculating Surface Fractal Dimensions of Adsorbents [J]. Adsorption Sci. and Technol., 1990, 7(4): 210-219.
  • 4Pfeifer P. Structure Analysis of Porous Solids From Presorbed Films [J]. Langmuir, 1991, 7: 2833-2835.
  • 5Neimark A V. A New Approach to the Determination of the Surface Fractal Dimension of Porous Solods [J]. Physica A, 1992, 191: 258-260.
  • 6ZHANG B, LI S. Determination of the Surface Fractal Dimension for Porous Media by Mercury Porosimetry [J]. Ind. Eng. Chem. Res., 1995, 34: 1383-1386.
  • 7WANG F, LI S. Determination of the Surface Fractal Dimension for Porous Media by Capillary Condensation [J]. Ind. Eng. Chem. Res., 1997, 36: 1598-1602.
  • 8Kaye B H. 分形漫步 [M]. 徐新阳, 康雁, 陈旭, 等译. 沈阳: 东北大学出版社, 1994. 13-15.
  • 9王鲁英. 多孔颗粒孔结构的分形表征 [D]. 北京: 中国科学院化工冶金研究所. 1999. 8-21.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部