期刊文献+

对离散Fourier变换公式四种形式的讨论 被引量:3

Four Forms of Discrete Fourier Transformtion Formulae
下载PDF
导出
摘要 分析了离散Fourier变换公式中求和符号前的常系数选取规律,提出了离散Fourier变换公式的分类概念,将离散Fourier变换公式分为通用型、缩频扩谱型、缩谱扩频型和频谱均衡型等4种类型;讨论了4种不同类型的离散Fourier变换公式的内在联系和一致性,分析了各种形式的离散Fourier变换公式所强调的侧重面,并讨论了它们的适用范围.主要结论为:离散Fourier正、逆变换公式中求和符号前常系数之乘积等于信号采样数的倒数;按此规律调整常系数,可以有重点地对信号开展频-谱分析;缩频扩谱型、缩谱扩频型离散Fourier变换公式分别适合于弱幅信号、低频信号的处理. On account of random choices of instant coefficients, there are various forms of discrete Fourier transformation formulae. Based on the principle of Fourier Transformation, the choice rules of instant coefficients of discrete Fourier transformation formulae were summarized, and a classified conception about the formulae was put forward. There are four forms of discrete Fourier transformation formulae: they are General Transformation Formula (GTF); Compressing Frequency- enlarging Spectrum Transformation Formula (CFESTF;Compressing Spectrum - enlarging Frequency Transformation Formula (CSEFTF) and Equilibrium Transformation Formula (ETF). We discussed the relation and uniformity among the 4 forms of formulae, analyzed the emphasized aspect about each form, and discussed their suitable fields. The results indicate that the product of two instant coefficients in the formulae of discrete Fourier and its inverse Transformations was equal to the reciprocal of the sampling number of observation signal;that CFESTF can be properly used in the processing of the weak amplitude signal or high frequency signal;and that CSEFTF can be properly used in the processing of the low frequency signal. These conclusions will help us to choose some reasonable type from discrete Fourier and its inverse transformations.
出处 《中南林业科技大学学报》 CAS CSCD 北大核心 2007年第2期100-103,共4页 Journal of Central South University of Forestry & Technology
基金 湖南省自然科学基金资助项目(05JJ30189) 湖南省教育厅科学研究项目(03C483)
关键词 FOURIER变换 常系数 一致性 分类 侧重面 适用范围 Fourier transformations instant coefficients uniformity classification emphasized aspect suitable fields
  • 相关文献

参考文献4

  • 1[1]KENNETH R,CASSTLEMAN.Digital Image Processing[M].NewYork:Prentice Hall Inc.,1996.176-177.
  • 2[3]陈传璋,金福临.数学分析下册[M].北京:人民教育出版社,1979.334-370.
  • 3[10]David Salmon 著.数据压缩原理与应用(第二版)[M].吴乐南译.北京:电子工业出版社,2003.343-350.
  • 4[12]Thomas M Lillesand,Ralph W Kiefer.遥感与图像解译[M].彭望,余先川,周涛,等译.北京:电子工业出版社,2003.359-363.

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部