期刊文献+

基于快速傅立叶变换的发动机点火波形分析 被引量:3

Engine Ignition Waveform Analysis Based on Fast Fourier Transform
下载PDF
导出
摘要 利用插值和快速傅立叶变换FFT,将发动机点火时域波形变换成频域的功率谱PSD,以从频率的角度来分析点火波形.提出了一种基于FFT变换的发动机点火波形分析方法,并给出充分的理论基础.结合两个具体实例说明该方法为时域波形分析提供了很好的补充,从而能更准确地对发动机进行故障判别. Adopting interpolation and fast Fourier transform, this paper transfers ignition time domain waveform into power spectrum density in the frequency domain and analyzes ignition waveform in the viewpoint of frequency. An analytical method of engine ignition waveform based on fast Fourier transform is presented together with its theoretical principle. The method provides a good supplement for time domain analysis of ignition waveform and makes engine fault diagnosis more accurate. It is illustrated by two examples.
出处 《中南林业科技大学学报》 CAS CSCD 北大核心 2007年第2期118-121,共4页 Journal of Central South University of Forestry & Technology
基金 中南林业科技大学引进人才项目"基于小波分析的汽车发动机故障诊断"(101-0079) 中南林业科技大学青年基金项目"CWT和SGWT及其在汽车发动机故障诊断中的应用"(101-0431)
关键词 发动机 点火分析 FFT PSD 波形分析 故障诊断 engine analysis of ignition FFT PSD waveform analysis fault diagnosis
  • 相关文献

参考文献5

  • 1[2]Sajib Barua,Ruppa K Thulasiram,Parimala Thulasiraman.High Performance Computing for a Financial Application Using Fast Fourier Transform[J].Springer-Verlag GmbH,2005,36(48):1246.
  • 2[3]Ruppa K Thulasiram,Parimala Thulasiraman.Performance Evaluation of a Multithreaded Fast Fourier Transform Algorithm for Derivative Pricing[J].Springer Science+Business Media B.V.,2003,26(1):43-58.
  • 3[4]M Mazurenka,R Wada,Shillings A J L,et al.Fast Fourier transform analysis in cavity ring-down spectroscopy:Application to an optical detector for atmospheric NO2[J].Springer-Verlag GmbH,2005,81(1):135-141.
  • 4蒋淑霞,傅勤毅,文振华.小波变换在轨道静态功率谱密度获取中的应用[J].交通运输工程学报,2004,4(2):33-35. 被引量:7
  • 5[6]Albert Boggess,Francis J Narcowich.A First Course in Wavelets with Fourier Analysis[M].Beijing:Publishing House of Electronics Industry,2002,91-154.

二级参考文献6

  • 1崔锦泰.小波分析导论[M].西安:西安交大出版社,1991..
  • 2胡昌华.基于MATLAB的系统分析与设计[M].西安:西安电子科技大学出版社,2000..
  • 3彭玉华.小波变换与工程应用[M].北京:科学出版社,2000..
  • 4[3]Vanden J V. Wavelet in Physics [M]. Cambrige University Press. 1999.
  • 5[6]Donobo D L,Johnstone I M. Ideal spatial adapation via wavelet shrinkage[J]. Biometrika, 1994,81(4) :425-455.
  • 6[7]Donobo D L, Johnstone I M. Adapating to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association, 1995,90 (11) : 1200-1224.

共引文献6

同被引文献21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部