期刊文献+

基于迭代粒子群算法的间歇过程优化 被引量:5

Iterative Particle Swarm Algorithm and Its Application to Batch Process Optimization
下载PDF
导出
摘要 针对无状态和终端约束的间歇过程动态优化问题,将迭代思想与粒子群优化算法相结合,提出了迭代粒子群算法。算法首先将控制变量离散化,用标准粒子群算法搜索离散控制变量的最优解,并在随后的迭代过程中不断收缩控制变量的搜索域,使优化性能指标和控制轨线不断趋于最优解。为使优化轨线光滑平稳,算法采用三点线性平滑算子对每次迭代结果进行平滑滤波。算法简洁,可行,高效,特别是在系统梯度信息不可得的情况下更具实用性。对一个间歇过程的仿真结果证明了迭代粒子群算法可以有效地解决不含状态和终端约束的间歇过程动态优化问题。 To solve dynamic optimization problems of batch processes without state independent and end - point constraints, an iterative particle swarm algorithm was developed. The main idea of the algorithm was to execute the standard particle swarm optimization iteratively then the control profile would converge to an optimal one. For the method, the control input Was discretized to a finite number of decision variables and particle swarm optimization was then used to search for the best control vector. The searching space contracted as iterations proceeded hence the performance index and control profile could achieve the best value. The results of each iterated calculation were filtered by a three - point linear smooth operator, which makes the optimal trajectory smooth and steady. The algorithm was simple, feasible and efficient. It is especially practical when the system' s gradient information is unavailable. The simulation result of a batch process shows that the iterative particle swarm algorithm can solve the dynamic optimization problems effectively if there is no state independent and end - point constraints.
出处 《计算机仿真》 CSCD 2007年第6期160-163,共4页 Computer Simulation
基金 国家自然科学基金资助项目(60504033)
关键词 迭代粒子群算法 间歇过程 动态优化 仿真 Iterative particle algorithm Batch process Dynamic optimization Simulation
  • 相关文献

参考文献8

  • 1R Luus.Optimal control of batch reactors by iterative dynamic programming[J].Journal of Process Control,1994,4:218-226.
  • 2S K Nguang,L Z Chen,X D Chen.Optimisation of fed-batch culture of hybridoma cells using genetic algorithms[J].ISA Transactions,2001,40:381-389.
  • 3张兵,陈德钊.迭代遗传算法及其用于生物反应器补料优化[J].化工学报,2005,56(1):100-104. 被引量:16
  • 4C O Ourique,E C Biscaia,J C Pinto.The use of particle swarm optimization for dynamical analysis in chemical processes[J].Computers and Chemical Engineering,2002,26:1783-1793.
  • 5R C Eberhart,Y Shi.Particle swarm optimization:Developments,applications and resources[C].Proceedings of the IEEE Conference on Evolutionary Computation,2001,1:81-86.
  • 6J Kennedy,R C Eberhart.Particle swarm optimization[C].Proceedings of the IEEE International Conference on Neural Networks,1995,4:1942-1948.
  • 7J Rajesh,K Gupta,H S Kusumakar,V K Jayaraman,B D Kulkarni.Dynamic optimization of chemical processes using ant colony framework[J].Computers and Chemistry,2001,25:583-595.
  • 8D Tieu,W R Cluett,A Penlidis.A comparison of collocation methods for solving dynamic optimization problems[J].Computers and Chemical Engineering,1995,19 (4):375-381.

二级参考文献5

  • 1Rajesh J, Gupta K, Kusumakar H S. Dynamic optimization of chemical processes using ant colony framework. Computersand Chemistry, 2001, 25:583-595.
  • 2Luus R. Optimization of fed-batch fermentors by iterative dynamic programming. Biotechnology and Bioengineering,1993, 41:599 - 602.
  • 3Roubos J A, van Straten G, van Boxtel A J B. An evolutionary strategy for fed-batch bioreactor optimization: concepts and performance. Journal of Biotechnology, 1999,67:173-187.
  • 4Lee J, Ramirez W F. Optimal fed-batch control of induced foreign protein production by recombinant bacteria. AIChE J , 1994, 40:899-907.
  • 5宋菁,曹竹安.迭代动态规划在系统最优化中的应用[J].化工学报,1999,50(1):125-129. 被引量:12

共引文献15

同被引文献34

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部