期刊文献+

Effect of process conditions on the synthesis of carbon nanotubes by catalytic decomposition of methane 被引量:1

Effect of process conditions on the synthesis of carbon nanotubes by catalytic decomposition of methane
原文传递
导出
摘要 A new dual-composition catalyst based on Ni-Mo/MgO with high efficiency of producing carbon nanotubes (CNTs) from methane was reported recently. In the present article, with this type of catalyst, the impact of such experimental parameters as reaction temperature, reaction time, concentration of H2, flow rate ratio of CH4 to H2 on yield and graphitization were investigated, leading to the following optimal growth conditions: reaction time 60min, reaction temperature 900℃, CH4:H2 about 100:20mL/min, under which high-yield multi-walled CNTs bundles were synthesized. Raman measurement indicated that the as-synthesized product was well-graphitized, and the purity was estimated over 95% by TG-DSC analysis. In terms of the above results, an explanation of high-efficiency formation of CNTs bundles and the co-catalysis mechanism of Ni-Mo/MgO were suggested. 2007 Chinese Societv of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. A new dual-composition catalyst based on Ni-Mo/MgO with high efficiency of producing carbon nanotubes (CNTs) from methane was reported recently. In the present article, with this type of catalyst, the impact of such experimental parameters as reaction temperature, reaction time, concentration of H2, flow rate ratio of CH4 to H2 on yield and graphitization were investigated, leading to the following optimal growth conditions: reaction time 60min, reaction temperature 900℃, CH4:H2 about 100:20mL/min, under which high-yield multi-walled CNTs bundles were synthesized. Raman measurement indicated that the as-synthesized product was well-graphitized, and the purity was estimated over 95% by TG-DSC analysis. In terms of the above results, an explanation of high-efficiency formation of CNTs bundles and the co-catalysis mechanism of Ni-Mo/MgO were suggested. 2007 Chinese Societv of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V.
出处 《China Particuology》 SCIE EI CAS CSCD 2007年第3期213-219,共7页
基金 This work was supported financially by the National Natural Science Foundation of China (No. 20506010) Beijing Novel Program (2006A74) Natural Science Fund of Shanxi Province (No. 20063004).
关键词 Carbon nanotubes Catalytic decomposition Carbon yield Graphitization degree Carbon nanotubes Catalytic decomposition Carbon yield Graphitization degree
  • 相关文献

参考文献1

  • 1K C Patil.Advanced ceramics: Combustion synthesis and properties[J].Bulletin of Materials Science.1993(6)

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部