期刊文献+

基于模糊滑窗隐马尔可夫模型的入侵检测研究 被引量:1

Research of intrusion detection based on fuzzy window hidden Markov model
下载PDF
导出
摘要 针对传统基于隐马尔可夫模型(HMM)入侵检测中普遍存在误报与漏报过高的问题,提出了一种基于模糊窗口隐马尔可夫模型(FWHMM)的入侵检测新方法。该方法通过运用状态转移依赖滑窗的设置提高了系统的检测精度,通过将状态的随机转移转变为模糊随机转移,提高了系统的鲁棒性和自适应性。实验结果表明,使用本文方法的检测效果要明显优于基于经典HMM的方法。 To improve detection accuracy, a new intrusion detection method with high efficiency was presented, which was based on Fuzzy Window Hidden Markov Model (FWHMM). The method improves detection accuracy by setting window of dependence between states and increases the self-adjustability and becomes lustier by changing the probability into the fuzzy random variable value. Experimental results show that the proposed method improves the detection accuracy more than the traditional HMM based method.
作者 成科扬
出处 《计算机应用》 CSCD 北大核心 2007年第6期1360-1362,共3页 journal of Computer Applications
关键词 入侵检测 模糊滑窗隐马尔可夫模型 intrusion detection Fuzzy Window Hidden Markov Model (FWHMM)
  • 相关文献

参考文献6

  • 1XU ZJ,SUN JZ,LI WJ.Intrusion Detection Using Fuzzy Window Markov Model[J].Proc.IEEE,2004:645-648.
  • 2冯前进,陈武凡.模糊马尔可夫场模型与图像分割新算法[J].南方医科大学学报,2006,26(5):579-583. 被引量:8
  • 3KWAKENAAK H.Fuzzy random variables Ⅰ:Definitions and theorems[J].Information Sciences 1978,15:1-29.
  • 4GRABISCH M,MUROFUSHI T,SUGENO M.Fuzzy measures and integrals:theory and applications[M].New York:Springer,2000.
  • 5张响亮,王伟,管晓宏.基于隐马尔可夫模型的程序行为异常检测[J].西安交通大学学报,2005,39(10):1056-1059. 被引量:16
  • 6LEE W,STOLFO S.Data mining approaches for intrusion detection[A].In:Proceedings of the 7th USENIX Security Symposium,San Antonio,TX,1998.26-40.

二级参考文献15

  • 1Forrest S, Hofmeyr S A, Somayaji A, et al. A sense of self for Unix processes [A]. 1996 IEEE Symposium on Security and Privacy, Oakland,USA, 1996.
  • 2Lee W, Stolfo S. Data mining approaches for intrusion detection [A]. 7th USENIX Security Symposium, Berkeley,USA, 1998.
  • 3Wang Wei, Guan Xiaohong, Zhang Xiangliang. Profiling program and user behaviors based on non-negative factorization for anomaly intrusion detection [A]. 43rd IEEE Conference on Control and Decision, Nassau, Bahamas,2004.
  • 4Wang Wei, Guan Xiaohong, Zhang Xiangliang. A Novel intrusion detection method based on principal component analysis in computer security [A]. International IEEE Symposium on Neural Networks, Dalian, China,2004.
  • 5Warrender C, Forrest S, Pearlmutter B. Detecting intrusions using system calls: alternative data models [A]. 1999 IEEE Symposium on Security and Privacy, Oakland, USA, 1999.
  • 6Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition [J]. Proceedings of the IEEE, 1989,77(2):257-289.
  • 7Xue JH, Ruan S, Moretti B, et al. Knowledge-based segmentation and labeling of brain structures from MRI images [J]. Pattern Recognition Letters, 2001, 22(3): 395-405.
  • 8Ahmed MN, Yamany SM. A Modified fuzzy c-means algorithms for bias field estimation and segmentation of MRI data [J]. IEEE Trans Med Imag, 2002, 21(3): 193-9.
  • 9Prewer D, Kitchen LJ. Soft image segmentation by weighted linked pyramid[J]. Pattern Recognition Letters, 2001, 22(2): 123-32.
  • 10Zhang Y, Brady M, Smith S. Segmentation of brain images through a hidden Markov random field model and the expectation- maximization algorithm[J]. IEEE Trans Med Imag, 2001, 20(1): 45-57.

共引文献22

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部