期刊文献+

一种基于FastICA的波达方向估计新方法 被引量:1

New method for estimation of DOA based on fast independent component analysis
下载PDF
导出
摘要 独立分量分析是一种新颖的盲源分离技术,该方法作为目前信号处理领域的一项新技术,具有非常重要的理论意义和实用价值,已广泛应用于通讯、雷达信号处理、生物医学图像处理、模式识别等众多领域。简要介绍了独立分量分析的基本原理和算法,并提出将快速独立分量分析(FastICA)方法应用于波达方向估计(DOA),通过仿真实验和分析,可以得到DOA的一种简单估计,实验结果亦表明该算法在波达方向估计应用中的可行性和有效性。 Independent Component Analysis (ICA) is a novel blind source separation method. As a new technique of signal processing, ICA has become more and more important and has been widely used in communication, processing of radar signals, image processing of biological medicine, pattern recognition and so on. In this paper, the fundamental theory and algorithm of ICA were presented. And a new method--fastICA was used for DOA estimation. A simple estimation method of DOA can be obtained. Experimental results have verified its feasibility and effectiveness.
出处 《计算机应用》 CSCD 北大核心 2007年第6期1510-1512,共3页 journal of Computer Applications
关键词 独立分量分析 波达方向估计 快速独立分量分析 Independent Component Analysis (ICA) estimation of DOA fast independent component analysis
  • 相关文献

参考文献9

  • 1NIELSON RO.Sonar Signal Processing(Acoustic and Signal Processing Library)[M].London:Artech House,1991.
  • 2WONG KT,ZOLTOWOSKI MD.Extended-Aperture Underwater Acoustic Multisource Azimuth/Elevation Direction-Finding Using Uniformly but Sparsely Spaced Vector Hydrophones[J].IEEE J.of Oceanic Engineering,1997,22(4):659-672.
  • 3李小军,张贤达,保铮.基于独立矢量基的波达方向估计[J].电子与信息学报,2002,24(10):1297-1303. 被引量:3
  • 4COMON P.Independent Component Analysis,A New Concept[J].Signal Processing,Special Issue on Higher Order Statistics (S0165-1684).1994,36(3):287 314.
  • 5HYVARINEN A,OJA E.Independent Component Analysis:Algorithms and Applications[J].Neural Networks (S0893-6080)2000,13(4-5):411-430.
  • 6GIANNAKOPOULOS X,KARHNNEN J,OJA E.Experimental Comparison of Neural ICA Algorithms[A].In:Proc.Int.Conf.on Artificial Neural Networks(ICANN'98)[C].Sk vde,Sweden,1998.651-656.
  • 7HYVARINEN A.Fast and Robust Fixed-Point Algorithms for Independent Component Analysis[J].IEEE Trans.on Neural Networks (S1045-9227),1999,10(3):626-634.
  • 8李贵斌.声呐基阵设计原理[M].北京:海洋出版社,1995.
  • 9BLANCO Y,ZAZO S.New Gaussianity Measures Based on Order Statistics:Application to ICA[J].Neurocomputing (S0925 -2312).2003,51:303-320.

二级参考文献11

  • 1S. Amari, A. Cichocki, H. H. Yang, A new learning algorithm for blind source separation, In G.Tesauro, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in Neural Information Processing,Cambridge, MA: MIT Press, 1996, 757-763.
  • 2A. Bell, T. Sejnowski, An information maximization approach to blind separation and blind deconvolution, Neural Computation, 1995, 7(6), 1129-1159.
  • 3P. Comon, Independent component analysis, A new concept? Signal Processing, 1994, 36(3),287-314.
  • 4R. Everson, S. Roberts, Independent component analysis: a flexible nonlinearity and decorrelating manifold approach, Neural Computation, 1999, 11(7), 1957-1983.
  • 5C. Jutten, J. Herault, Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture, Signal Processing, 1991, 24(1), 1 10.
  • 6J. karhunen, J. Joutsensalo, Representation and separation of signals using nonlinear PCA type learning, Neural Networks, 1994, 7(1), 113-127.
  • 7D. Mackay, Maximum likelihood and covariant algorithms for independent component analysis,Tech. Rep., Cambridge, 1996.
  • 8S. Amari, Natural gradient works efficiently in learning, Neural Computation, 1998, 10(1), 251 276.
  • 9J. Karhunen, P. Pajunen, E. Oja, The nonlinear PCA criterion in blind source separation: Relations with other approaches, Neurocomputing, 1998, 22(1), 5-20.
  • 10B. Yang, Projection approximation subspace tracking, IEEE Trans. on Signal Processing, 1995,SP-43(1), 95-107.

共引文献2

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部