期刊文献+

多输入多输出浅海水声信道响应的盲估计 被引量:1

Blind Estimation of Multi-inputs and Multi-outputs Shallow-Water Acoustic Channel
下载PDF
导出
摘要 提出一种在频率域实现的MIMO(multi-inputs multi-outputs)盲解卷积算法,可以在较低信噪比下求解得到浅海水声信道冲激响应的逆滤波器响应,不受时间域的原始信道阶数很长且稀疏的影响,经过求逆后得到原始MI-MO浅海水声信道的冲激响应.最后采用合理的声场仿真模型验证了算法的有效性. A frequency domain method for the blind multi-inputs multi-outputs (MIMO) underwater deconvolution is developed to estimate the original acoustic channel from received signals on hydrophones only,with the low signal to noise ratio (SNR). The method is not influenced by a long impulse response order and sparse underwater acoustic channel in time domain. By inversing the blind deconvolution result, the origin MIMO channel impulse response can be obtained. The results based on simulation model of underwater acoustic field prove this work to be effective and efficient for blind estimation of the shallow-water acoustic channel.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第5期664-668,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金资助项目(60472073 10304015) 教育部高等学校博士学科点专项基金资助项目(20020699010)
关键词 水声信道 码间干扰 通道间干扰 盲解卷积 acoustic channel inter-symbol interference interehannel interference blind deconvolution
  • 相关文献

参考文献8

  • 1Giannakis G B,Hu Y,Stoica P,et al.Signal processing advances in wireless and mobile communications:trends in channel estimation and equalization[M].Beijing:Post & Telecommunication Press,2002.
  • 2李蓉艳,马远良,张翼鹏,何正耀.浅海水声信道盲估计方法比较[J].声学技术,2004,23(z1):120-123. 被引量:3
  • 3Haykin S.Unsupervised adaptive filtering:blind deconvolution[M].New York:John Wiley & Sons,2000.
  • 4Porter M B,Bucker H P.Gaussian beam tracing for computing ocean acoustic field[J].J Acoust Soc Am,1984,87 (4):1349.
  • 5Lambert R H.Multichannel blind deconvolution:firmatrix algebra and separation of multipath mixtures[D].Los Angeles:Department of Electrical Engineering,University of Southem Califomia,1996.
  • 6Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995,7(6):1129.
  • 7Amari S.Natural gradient works efficiently in learning[J].Neural Computation,1998,10(2):251.
  • 8Douglas S C.On equivariant adaptation in blind deconvolution[C]//Conference Record of the Thirty-Sixth Asilomar Conference on Signals,Systems and Computers.Dallas:Wiley-IEEE Press,2002:763-767.

二级参考文献5

  • 1[1]M.B. Porter, "The KRAKEN normal mode program," SACLANT Undersea Research Centre, La Spezia,SACLANTCEN Memorandum SM-245, Sep. 1991.
  • 2[2]J.-F. Cardoso and B. H. Laheld. Equivariant adaptive source separation. IEEE Transactions on Signal Processing, 44(12):3017-3030, December 1996.
  • 3[3]S. Amari, S.C. Douglas, A. Cichocki, and H.H. Yang, "Novel online adaptive learning algorithms for blind deconvolution using the natural gradient approach," in Proc. 11th IFAC Symposium on System Identification,vol. 3, Kitakyushu City, Japan, July 1997, pp. 1057-1062.
  • 4[4]A.J. Bell and T.J. Sejnowski, "An information-maximization approach to blind separation and blind deconvolution," Neural Computation, vol. 7, no. 6, pp. 1004-1034, 1995.
  • 5[5]M. Joho, A Systematic Approach to Adaptive Algorithms for Multichannel System Identification, Inverse Modeling, and Blind Identification. PhD thesis, Swiss Federal Institute of Technology, 2000.

共引文献2

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部