期刊文献+

气动肌肉驱动仿生关节的理论分析 被引量:8

Theoretical Analysis of Biomimetic Joint Actuated by Pneumatic Muscles
下载PDF
导出
摘要 根据气动肌肉的简化模型,通过引入关节的刚度和力矩-压力系数等概念,建立了由一对对抗性气动肌肉驱动仿生关节的理论模型。研究了关节的刚度和位置独立控制时对气动肌肉输入压力的要求,并对气动肌肉驱动关节运动时的几种压力变化方式进行了分析。研究表明,两个气动肌肉的压力的不同变化方式对于关节动态的刚度、转矩有很大的影响。 Based on the simplified model of the pneumatic muscle actuator, the concept of joint stiffness and torque-pressure coefficient were introduced, and the theoretical model of a biomimetic joint actuated by a pair of antagonist muscles was built. When both the stiffness and the position of the joint were controlled, the expression of pressure variation for the pneumatic muscles were studied. According to the sequence of pressure input, four methods to actuate the joint were analyzed. The research results show that different charging and discharging methods for the pneumatic muscles can have much effect on the stiffness and torque of the joint.
出处 《机床与液压》 北大核心 2007年第6期113-116,共4页 Machine Tool & Hydraulics
基金 哈尔滨工程大学基础研究基金项目(HEUFT05041)
关键词 气动肌肉 仿生关节 建模 Pneumatic muscle Biomimetic joint Modeling
  • 相关文献

参考文献3

  • 1隋立明,王祖温,包钢.气动肌肉的刚度特性分析[J].中国机械工程,2004,15(3):242-244. 被引量:15
  • 2C.P Chou,B Hannaford.Measurement and modeling of McKibben pneumatic artificial muscles[J].IEEE Transactions on Robotics and Automation,1996,12(1):90-102.
  • 3B Tondu,P Lopez.Modeling and control of McKibben artificial muscle robot actuators[J].IEEE Control System Magazine,2000(4):15-38.

二级参考文献1

共引文献14

同被引文献30

  • 1杨钢,李宝仁,傅晓云.气动人工肌肉系统动态特性研究[J].中国机械工程,2006,17(12):1294-1298. 被引量:16
  • 2HUSSAIN S, XIE Shengquan, LIU Guangyu. Robot assisted treadmill training: mechanisms and training strategies [ J ] Medical Engineering & Physics, 2011,33 : 527-533.
  • 3JEZERNIK S, COLOMBO G, MORAR M. Automatic gaitpattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis [ J ]. IEEE Transactions on Robotics and Automation, 2004, 20(3): 574-582.
  • 4BANALA S, AGRAWAL S, SEOK H K, SCHOLZ J. Novel gait adaptation and neuromotor training results using an active leg exoskeleton [ J ]. IEEE/ASME Transactions on Mechatronics, 2010, 15 (2) :216-225.
  • 5SCHMIDT H, SOROWKA D, HESSE S, et al. Robotic walking simulator for neurological gait rehabilitation [ C ]// Proceedings of the 2nd Joint EMBS/BMES Conference. Huston, USA, 2002 : 2356-2357.
  • 6YOON J, NOVANDY B, YOON C H, et al. A 6-DOF gait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains [ J ]. IEEE/ ASME Transactions on Mechatronics, 2010, 15(2) :201-215.
  • 7PONS J L. Rehabilitation exoskeletal robotics [ J ]. IEEE Engineering in Medicine and Biology Magazine, 2010, 29 (3) :57-63.
  • 8CHU A, KAZEROONI H, ZOSS A. On the biomimetic design of the berkeley lower extremity exoskeleton (BLEEX) [C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005 : 4345-4352.
  • 9PRATT J E, KRUPP B T, MORSE C J. The RoboKnee: an exoskeleton for enhancing strength and endurance during walking[ C ]//Proceedings of the 2004 IEEE International Conference on Robotics & Automation. New Orleans, USA, 2004 : 2430-2435.
  • 10SUZUKI K, KAWAMURA Y, HAYASHI T, et al. Intention-based walking support for paraplegia patient[ C]//Proceedings of the 2005 International Conference on Systems, Man and Cybernetics. Hawaii, USA, 2005 : 2707-2713.

引证文献8

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部