期刊文献+

一种改进的基于Sobol序列的快速线积分卷积法 被引量:4

An improved algorithm of fast line integral convolution with Sobol sequence
下载PDF
导出
摘要 为提高快速线积分卷积法(Sobol-FLIC)的计算效率和流线的覆盖率,提出了一种改进的基于Sobol序列的快速线积分卷积法。计算结果表明,与一般的快速线积分卷积法相比,改进后的算法计算效率提高了约10%,同时可以产生稀疏纹理和密纹理,并且采用二次LIC法对图像进行后处理提高了可视化效果。在Matlab环境中,该算法与几种基本算法(LIC,FLIC)的可视化效率、计算固定数目流线的可视化结果和图像覆盖率的比较结果证实了其优越性。 To enhance computation efficiency and coverage of streamlines of fast line integral convolution ( LIC), an improved algorithm of fast LIC with Sobol sequence (Sobol-FLIC) was presented. The computation results show that compared with the traditional FLIC, the computation efficiency of the improved algorithm increases by approximately 10%, and it can generate sparse texture and dense texture simultaneously. Also the property of result image was improved using double LIC algorithm. Compared with some other methods including LIC and FLIC in Matlab environment, the visualization efficiency, the image coverage after calculating fixed number of streamlines of the improved algorithm is better.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第3期162-166,共5页 Journal of China University of Petroleum(Edition of Natural Science)
关键词 快速线积分卷积法 Sobol序列 矢量场可视化 fast line integral convolution Sobol sequence vector field visualization
  • 相关文献

参考文献7

  • 1van WIJK JJ.Spot noise-texture synthesis for data visualization[J].Computer Graphics,1991,25(4):263-272.
  • 2BRIAN Cabral,LEITH Leedom.Imaging vector fields using line integral convolution[J].Computer Graphics,1993,27(4):263-270.
  • 3STALLING D,HEGE H C.Fast and resolution independent line integral convolution[C]//SIGGRAPH 95Conference Proceedings.New York:ACM SIGGRAPH.1995:249-256.
  • 4BRATLEY P,FOX B L.Algorithm 659:implementing Sobol's quasirandom sequence generator[J].ACM Trans Math Software,1988,14:88-100.
  • 5WILLIAN H Press,SAUL A Teukolsky,WILLIAM T Vetterling,et al.Numerical Recipes in C:the art of scientific computing[M].2nd ed.Cambridge:Cambridge University Press,1992.
  • 6张文,李晓梅.基于流线纹理合成的2D矢量场可视化[J].中国图象图形学报(A辑),2001,6(3):280-284. 被引量:11
  • 7ARTHUR 0kada,DAVID Kao.Enhanced line integral convolution witll flow feature detection[J].Proc SPIE Electmnies Imaging,1997,30(17):206-217.

二级参考文献5

  • 1[1]Cabral B,Leedom L.Imaging vector fields using line integral convolution.In:Proceedings of SIGGRAPH '93,Anaheim California,1993:263~272.
  • 2[2]Stalling D,Hege H C.Fast and resolution-independent line integral convolution.In:Proceedings of SIGGRAPH '95,Los Angeles California,1995:249~256.
  • 3[3]Risquet C.Visualizing 2D flows: Integrate and draw.In:Proc.Of the 9th Eurographics Workshop on Visualization in Scientific Computing,Germany,1998.
  • 4[4]Wolberg G,Massalin H.Fast convolution with packed lookup tables.Graphics Gems IV,Academic Press,1994.
  • 5[5]Helman J L,Hesselink L.Visualizing vector field topology in fluid flows.IEEE Computer Graphics and Applications,1991,11(3):36~46.

共引文献10

同被引文献45

  • 1孙长会,范茵,李骞.基于区域卷积的增强型点噪声算法[J].系统仿真学报,2009,21(S1):175-177. 被引量:2
  • 2余文勇,周祖德,陈幼平.一种高速印刷品缺陷在线检测系统[J].华中科技大学学报(自然科学版),2006,34(6):80-83. 被引量:19
  • 3何兵,陈恺,于兆海.一种非结构矢量场的线卷积积分方法[J].计算机研究与发展,2006,43(9):1511-1515. 被引量:3
  • 4何巧玲,叶东毅.基于核的模糊熵聚类算法[J].福建电脑,2007,23(8):113-114. 被引量:1
  • 5Zhou Ji, Dasgupta D. Revisiting negative selection algorithms[J]. Evolutionary Computation, 2007, 15(2): 223-251.
  • 6Forrest S, Perelson A S, Allen L, et al. Self-nonself discrimination in a computer[C]. Proc of the 1994 IEEE Symposium on Research in Security and Privacy. Los Alamitos: IEEE, 1994: 221-231.
  • 7Gonzalez F, Dasgupta D. Anomaly detection using real- valued negative selection[J]. Genetic Programming and Evolvable Machines, 2003, 4(4): 383-403.
  • 8Zhou Ji, Dasgupta D. Real-valued negative selection algorithm with variable-sized detectors[C]. Proc of GECCO. Washington: Springer, 2004: 287-298.
  • 9Stibor T, Timmis J, Eckert C. A comparative study of real- valued negative selection to statistical anomaly detection techniques[C]. Proc of the 4th Int Conf on Artificial Immune Systems. Berlin: Springer, 2005: 262-275.
  • 10Zhou Ji, Dasgupta D. Augmented negative selection algorithm with variable-size detectors[C]. IEEE Congress of Evolutionary Computation. Washington: IEEE Press, 2004, 1: 1081-1088.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部