期刊文献+

无穷范数意义下的可镇定半径问题

The Stabilizable Radius Problem with Infinity Norm
下载PDF
导出
摘要 利用棱边定理给出了计算参数未知的区间对象族能镇定半径的解析式.对于参数区间确定且标称对象相同的区间对象族,通过本文方法计算出的可镇定半径,只要参数变化范围小于能镇定半径时,即可确保给定区间对象族能镇定.最后,通过一个计算例子说明了本文的方法. The analytic expressions to calculate stabilizable radius of interval plant family with infinity-norm are given based on edges theorem. For any plant family with the same nominal plant, the judgement of stabilizability is trivial by the stabilizable radius which can be calculated by the method of this paper. At last, the availability of the proposed method is verified by means of an example.
出处 《自动化学报》 EI CSCD 北大核心 2007年第6期622-627,共6页 Acta Automatica Sinica
基金 辽宁省智能控制理论及应用重点实验室基金(200521309)资助~~
关键词 对象族 可镇定半径 棱边定理 Plant family, stabilizable radius, edges theorem
  • 相关文献

参考文献5

  • 1刘世岳,伍清河.对象族可镇定半径的计算[J].兵工学报,2003,24(2):242-245. 被引量:1
  • 2Barmish B R,Ortega R.On the radius of stabilizability of LTI systems:application to projection implementation in indirect adaptive control.International Journal of Adaptive and Signal Processing,1991,5(4):251~258
  • 3Chockalingam G,Dasgupta S.Minimality,stabilizability,and strong stabilizability of uncertain plants.IEEE Transctions on Automatic Control,1993,38(11):1651~1661
  • 4Kharitonov V L.Asymptotic stability of an equilibrium position of a family of systems of linear differential equation.Differential'nye Uravnenia,1978,14:2086~2088
  • 5Barmish B R.New Tools for Robustness of Linear Systems.New York:Macmillan Publishing Company,1994

二级参考文献3

  • 1Barrnish B R. New Tools for Robustness of Linear SysterrLs. New York: Maernillan Publishing Company, 1994.19--39.
  • 2Bannish B R,Ortega R. On the radius of stabilizability of LTI systems: Application to projection implementation in indirect adaptive control. International Journal of Adaptive and Signal Processing,1991, (5) : 251-- 258.
  • 3Wu Qinghe, Mansour M. Robust stability analysis of control systems with parameter uncertainties: an eigenvalue approach. In:Hollot C V. Proc of 14th Congress of IFAC( International Federation of Aulomatic Control). Beijing PR China. 1999, (G) : 49--54.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部