期刊文献+

具有随机扰动的Logistic方程正解的存在唯一性、全局吸引性及其参数的极大似然估计 被引量:6

原文传递
导出
摘要 讨论了随机化Logistic方程(?)(t)=(r+α(?)(t))N(t)[1-N(t)/K],其初值N(0)=N_0且0<N_0<K是一个随机变量.主要研究了正解的存在性、唯一性及全局吸引性,并给出了方程中参数的极大似然估计.
出处 《中国科学(A辑)》 CSCD 北大核心 2007年第6期742-750,共9页 Science in China(Series A)
基金 国家自然科学基金(批准号:10431010和10571021) 教育部重点应用统计实验室(KLAS)资助项目
  • 相关文献

参考文献11

  • 1May R M. Stability and Complexity in Model Ecosystems. Princeton: Princeton University Press, 1973
  • 2Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics. London: Kluwer Academic Publishers, 1992
  • 3Hale J K. Nonlinear oscillations in equations with delays, nonlinear oscillations in biolgy. Lect in Appl Math, 17:157-185 (1979)
  • 4Mao X, Marion G, Renshaw E. Environmental Brownian noise suppresses explosions in population dynamics. Stoc Proc and Appl, 97:95 110 (2002)
  • 5Arnold L. Stochastic Differential Equations: Theory and Applications. New York: Wiley, 1972
  • 6Fredman A. Stochastic Differential Equations and Their Applications. San Diego: Academic Press, 1976
  • 7Fan J, Zhang C. A reexamination of diffusion estimators with applications to financial model validation. J Amer Star Assoc, 98:118-134 (2003)
  • 8Fan J, Yao Q. Nonlinear Time Series, Nonparametric and Parametric Methods. New York: Springers 2003
  • 9Kendall M G. Advanced Theory of Statistics. Griffin: Charles, 1987
  • 10Gilpin M E, Ayala F G. Global models of growth and competition. Proc Nat Acad Scis USA, 1973, 70: 3590-3593

同被引文献29

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部