期刊文献+

用聚类-分类模式解决聚类问题 被引量:6

Clustering Based on Clustering-Classification Model
下载PDF
导出
摘要 分类和聚类都是常用的数据挖掘方法,分类的优点是准确率较高,但需要带有类别标注的训练集;聚类不需要训练集,但准确率较低。提出一种聚类-分类模式来解决聚类问题,首先通过聚类方法自动形成训练集,然后在训练集的基础上进行分类操作。实验数据表明,提出的聚类-分类模式能够有效提高聚类的准确率。 Classification and clustering are both commonly used data mining methods. The advantage of classification is that the accuracy is higher ,but the labeled training set is needed. The training set is not needed in clustering but the accuracy is lower. A clustering-classification model is proposed to solve the clustering problem. First ,the training set is formed automatically by clustering, and then the classification proceeds based on the training set. Experiments show that the cluster-classification model can improve the effect of clustering.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2007年第2期127-130,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 河北省科技攻关计划资助项目(05213573) 河北省教育厅科研计划资助项目(2004406)
关键词 聚类算法 分类算法 聚类-分类模式 clustering classification clustering-classification model
  • 相关文献

参考文献8

二级参考文献21

  • 1苏毅娟,严小卫.一种改进的频繁集挖掘方法[J].广西师范大学学报(自然科学版),2001,19(3):22-26. 被引量:10
  • 2邦迪JA 默蒂USR.图论及其应用[M].北京:科学出版社,1984..
  • 3[1]M Weber, M Welling, P Perona. Towards automatic discovery of object categories. IEEE Conf on Computer Vision and Pattern Recognition, Hilton Head Island, 2000
  • 4[2]K P Bennett, A Demiriz. Semi-supervised support vector machines. In: D C M Kearns, S Solla, eds. Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1998. 368~374
  • 5[3]K Nigam, A McCallum, S Thrun .et al.. Text classification from labeled and unlabeled documents using EM. Machine Learning, 1999, 39: 103~134
  • 6[4]W Ying, H Thomas S. Self-supervised learning for object recognition based on kernel discriminant-EM algorithm. The IEEE Int'l Conf on Computer Vision, Vancouver, 2001
  • 7[5]B Sugato. Semi-supervised clustering by seeding. The 19th Int'l Conf on Machine Learning, Sydney, 2002
  • 8[6]Kristin P Bennett, Ayhan Derniriz .et al.. Exploiting unlabeled data in ensemble methods. The 8th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining, Edmonton, 2002
  • 9[7]A P Dempster, N M Laired, D B Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, B(39): 1~38
  • 10[8]Nei Kato. A handwritten character recognition system using directional element feature and asymmetric Mahalanobis distance. IEEE Trans on Pattern Analysis and Machine Intelligence, 1999, 21(3): 258~262

共引文献32

同被引文献53

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部