期刊文献+

冲压成形仿真数据的主成分与模糊聚类分析 被引量:4

Principal component and fuzzy C-means clustering analysis of stamping simulation results
下载PDF
导出
摘要 冲压成形数值仿真结果中隐含着大量的领域知识。文章将主成分分析与模糊聚类方法应用于基于仿真模型与模拟结果数据的冲压件相似性判别与成形性能判别。通过对油箱冲压成形有限元仿真结果数据进行处理,分析了压边力、拉延筋设置参数、摩擦系数等工艺参数对成形性能的相对重要程度;构造了油箱成形性能的模糊概念,描述其破裂、起皱程度。通过对汽车覆盖件有限元模型数据的分析,对汽车覆盖件进行模糊分类及相似性判别。结果表明,面向有限元仿真结果的数据挖掘技术,可以为冲压成形领域知识发现提供一种有效的新途径。 Large amount of implicit and useful knowledge is embedded in the simulation results of stamping. In this paper, the principal component analysis and fuzzy C-means clustering is introduced into the similarity and formability assessment of stamping components based on data processing of simulation data. The relative importance degree of various technique parameters, including blankholder force, drawbead setting and friction coefficient, are obtained for an oil pan stamping process. The fuzzy concepts are developed by fuzzy C-means clustering method to describe crack and wrinkling of the oil pan. With these two methods, the similarities of the auto panels are also analyzed based on the finite element data. The analysis results show that data mining technology oriented to FEM results provides an effectively novel method of knowledge acquisition in stamping field.
出处 《塑性工程学报》 EI CAS CSCD 北大核心 2007年第3期40-44,共5页 Journal of Plasticity Engineering
基金 国家自然科学基金资助项目(50634010) 上海市科委项目资助(06QA14026 05JC14022)
关键词 冲压成形 知识工程 数值模拟 主成分分析 模糊C聚类 stamping knowledge-based engineering numerical simulation principal component analysis fuzzy C-means clustering
  • 相关文献

参考文献6

  • 1尹纪龙,李大永,彭颖红.数值仿真结果中知识发现的模糊-粗糙集方法[J].上海交通大学学报,2004,38(9):1448-1452. 被引量:4
  • 2Shi X,Chen J,Yang H,et.al.A novel approach to extract knowledge from simulation results[J].The International Journal of Advanced Manufacturing Technology.2002.20,390~396
  • 3Peng Y H,Zhao Z,Ruan X Y.KBE technology in Engineering Design[C].Proceeding of International Conference on Engineering and Technological Sciences 2000,Beijing,China:Chira Ocean Press,2001.94~100
  • 4Jolliffe I T.Principal component analysis(2nd ed.)[M].New Ymk:Springer,2002
  • 5Sugeno M,Yasukawa T.A fuzzy-logic-based approach to qualitative modeling[J].IEEE Trans.on Fuzzy Systerns,1993.(1):7~31
  • 6http://www-nrd.nhtsa.dot.gov/departments/nrd-11/FEA_models.html.

二级参考文献8

  • 1Peng Yinghong, Zhao Zhen, Ruan Xueyu. Application of KBE technology in die & mold design [A].Proceedings of the 1st International Conference on Die and Mold Technology [C]. Beijing: China Machine Press, 2000. 80-86.
  • 2James Dougherty. Supervised and unsupervised discretization of continuous features [A]. Proceedings of the 12th International Conference[C]. San Francisco: Morgan Kaufman Publishers. 1995.
  • 3Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, (11): 341-356.
  • 4Hong Tzung-Pei, Wang Tzu-Ting, Wang ShyueLiang. Knowledge acquisition from quantitative data using the rough-set theory [J]. Intelligent Data Analysis, 2000, (4) :289-304.
  • 5Hong Tzung-Pei. Learning a coverage set of maximally general fuzzy rules by rough sets[J]. Expert Systems with Applications, 2000, (19): 97- 103.
  • 6Joachim Dankert. Experimental investigation of a square-cup deep-drawing process[J]. Journal of Materials Processing Technology, 1995, 50: 375 - 384.
  • 7HanJiawei KamberM.Data Mining Concepts and Techniques[M].北京:机械工业出版社,2001..
  • 8ZadehLA.模糊集合、语言变量与模糊逻辑[M].北京:科学出版社,1982..

共引文献3

同被引文献35

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部