期刊文献+

基于支持向量机的网格负载信息预测模型 被引量:2

Grid Load Forecasting Based on Least Squares Support Vector Machine
下载PDF
导出
摘要 提出了采用小波分析和最小二乘支持向量机(LS-SVM)混合模型对网格负载信息进行预测。该模型首先基于小波多分辨率分析对非平稳的网格负载样本做序列分解,得到不同尺度下的负载分量,然后利用LS-SVM对不同尺度的分量进行预测,最后通过对各分量预测信息进行重构得到相应的预测值。实验结果表明,使用本模型进行短期负荷预测比传统小波神经网络方法可以获得更好的预测精度。 An algorithm for grid load forecasting based on wavelet analysis and least squares support vector machine, was introduced. Begin with discussion of decomposition of serial signal of grid load and then get the forecasts of each sub- signa/s by LS- SVM. The third step is combination of these forecasts. This method was successfully achieved on forecasting of memory load. The experiment result shows that it can get better forecasting accuracy to traditional wavelet neural network in short - term load forecasting.
出处 《计算机技术与发展》 2007年第6期32-35,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(60573135 0-5223-22) 国家重大基础研究973资助项目(2003CB317008)
关键词 网格预测 最小二乘支持向量机 多分辨率分析 小波变换 grid forecasting LS- SVM multi- scale prediction wavelet transform
  • 相关文献

参考文献9

二级参考文献40

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1992..
  • 2Kottegoda N T 金光炎(译).随机水资源技术[M].北京:农业出版社,1987..
  • 3易丹辉.统计与预测——方法与应用[M].北京:中国人民大学出版社,1997..
  • 4孙宏波.电力网络规划[M].重庆:重庆大学出版社,1996.69-73.
  • 5邓建中 等.计算方法[M].西安:西安交通大学出版社,1996..
  • 6Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882.
  • 7Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54.
  • 8Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004.
  • 9Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492.
  • 10Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287.

共引文献451

同被引文献13

  • 1周叶,唐澍,潘罗平,夏伟.基于支持向量机的水电机组轴系运行故障诊断及预测研究[J].水利学报,2013,44(S1):111-115. 被引量:11
  • 2张晨希,张燕平,张迎春,陈洁,万忠.基于支持向量机的股票预测[J].计算机技术与发展,2006,16(6):35-37. 被引量:28
  • 3潘杰珠.基于数据挖掘的预警技术研究[D].合肥:合肥工业大学,2007.
  • 4Vapnik V, Golowich S E, Smola A. Support vector method for function approximation, regression estimation and signal pro- cessing[ C 1//Proc of the 1996 Neural Information Processing System Conference. Dever, CO, USA: MIT Press, 1997:281 - 287.
  • 5Vapnik V. An overview of statistical learning theory[ J ]. IEEE Trans. on Neural Networks, 1999,10 (5) :988-999.
  • 6Knerr S, Personnaz L, Dreyfus G. Single-layer Learning Revis- ited:A Stepwise Procedure for Building and Training a Neural Network [ M ]//Neurocomputing : Algorithms, Architectures and Applications. New York : Springer-Verlag, 1990.
  • 7Koike A, Takagi T. Prediction of protein- protein interaction sites using support vector machines [ J ]. Protein Engineering, Design & Selecion ,2004,17 (2) : 165-175.
  • 8Yan Changhui ,Dobbs D ,Hoavar V. A two-stage classifier for identification of protein-protein interface residues [ J ]. Bioin- formatics ,2004,20(s) :371-378.
  • 9Liu S, Lindholm C K. Assessing early warning signals of cur- rency crisesa: fuzzy clustering approach [ J ]. International Journal of Intelligent Systems in Accounting, Finance and Management,2006 (4) :179-202.
  • 10李正欣,赵林度.基于支持向量机的电价价格钉预测[J].中国电力,2007,40(11):42-45. 被引量:2

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部