期刊文献+

基于NAS-RIF算法和神经网络的图像盲复原 被引量:1

Blind Image Restoration Algorithm Based on NAS-RIF Algorithm and Neural Network
下载PDF
导出
摘要 在图像盲复原中,NAS-RIF算法在无噪情况下,能够得到较好的复原结果,但是对有观测噪声的图像复原效果不理想。而Hopfield神经网络有利于缓解图像复原过程中的震铃效应,但前提是知道退化图像的点扩展函数。将二者相结合提出一种基于NAS-RIF算法和神经网络的图像盲复原新算法,首先由NAS-RIF算法先估计出退化图像的点扩展函数,再利用Hopfield神经网络算法对其进行复原。实验结果表明,该算法具有较好的盲复原效果。 In blind image restoration, the NAS- RIF algorithm can obtain the better restoration result while without noise. When observational noise exists, the restoration obtained by NAS- RIF algorithm isn't ideal, However, Hopfield neural network is good at alleviating ringing effect in the process of restoration. But the premise is that the PSF of the degraded image has been known. Gives a new blind image restoration algorithm which based on NAS- RIF algorithm and neural network. NAS - RIF algorithm estimates PSF from degraded image at first , and then neural network restores. The result of the experiment shows that this algorithm will produce better effect than others.
出处 《计算机技术与发展》 2007年第6期104-106,共3页 Computer Technology and Development
基金 安徽省教育厅自然科学基金重点资助项目(2004kj033dz)
关键词 图像盲复原 NAS-RIF HOPFIELD神经网络 blind image restoration NAS-RIF Hopfield neural network
  • 相关文献

参考文献6

  • 1KUNDUR D,HATZINAKOS D.Blind image deconvolution[J].IEEE Signal Processing Magazine,1996,13 (3):43-64.
  • 2张航,罗大庸.图像盲复原算法研究现状及其展望[J].中国图象图形学报(A辑),2004,9(10):1145-1152. 被引量:53
  • 3KUNDUR D,HATZINAKOS D.A novel blind deconvolution scheme for image restoration using recursive filtering[J].IEEE Trans on Signal Processing,1998,46 (2):375 -389.
  • 4ZHOU Y T,CHELLAPPA R,VAID A,et al.Image restoration using a neural network[J].IEEE Transactions on ASSP,1988,36(7):1141-1151.
  • 5PAIK J K,KATSAGGELOS A K.Image restoration using a modified Hopfield network[J].IEEE Transactions on Image Processing,1992,1 (1):49-63.
  • 6王磊,戚飞虎,莫玉龙.精确复原退化图象的连续 Hopfield 网络研究[J].上海交通大学学报,1997,31(12):43-46. 被引量:13

二级参考文献68

  • 1王磊,莫玉龙.基于自反馈连续Hopfield网络复原运动模糊图象的研究[J].电子器件,1997,20(1):296-300. 被引量:1
  • 2郑南,西安交通大学学报,1991年,25卷,6期,15页
  • 3Li Yunming,Proc 10th Inter Conf on Pattern Recognition,1990年
  • 4Zhou Y T,IEEE Trans ASSP,1988年,36卷,7期,1141页
  • 5Jordi Sole, Anisse Taleb, Christian Jutten. Parametric Approach to Blind Deconvolution of Nonlinear Channels[A]. In:ESANN'2000-European Symposium on Artificial Neural Networks[C], Bruges, Belgium, 2000 : 26 - 28.
  • 6Haritopoulos Michel, Yin Hujun, Allinson M. Image denoising using self-organizing map-based nonlinear independent component analysis[J]. Neural Networks,2002,15(8-9):1085-1098.
  • 7Lun Daniel P K, Hsung T C, Shen T W. Orthogonal discrete periodic Radon transform. Part I: Theory and realization [J].Signal Processing, 2003,83 (5) : 941 - 955.
  • 8Lun Daniel P K, Hsung T C, Shen T W. Orthogonal discrete periodic Radon transform. Part I : applications [J]. Signal Processing, 2003,83(5) : 957-971.
  • 9Krell Gerald, Herzog Andreas, Michaelis Bernd. An artificial nervous network for real-time image restoration[A]. In:IEEE Instrumentation and Measurement Technology Conference[C],Brussels, Belgium, 1996.
  • 10Lagendijk R L, Tekalp A M, Biemond J. Maximum likelihood image and blur identification: A unifying approaeh[J]. Optical Engineering, 1990,29(5) :422-435.

共引文献64

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部