期刊文献+

一种新的六角形网格的砍边细分方法 被引量:1

New edge-cutting subdivision scheme for hexagonal meshes
下载PDF
导出
摘要 提出了一种新的六角形网格的砍边细分算法。该算法通过面收缩和砍边两个过程,使细分网格的数目以4为倍数增长,并选择适当的几何定位使细分曲面保持C1连续性。该算法只适用于顶点的价为3的半正则网格,而对于任意的初始控制网格,算法可以通过预处理使初始网格半正则化。 A new edge-cutting subdivision algorithm for hexagonal meshes is proposed. The algorithm makes the number of the meshes increase by the factor of 4 through two approaches which are facet-shrinking and edge-cutting,and also keeps the subdivision surface C^1 continuous by selecting suitable geometric location. The algorithm only adapts to semiregular meshes whose valence of each vertice is 3,so the arbitrary initial control mesh needs to be semiregularized by preprocessing.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第18期56-58,共3页 Computer Engineering and Applications
关键词 六角形网格 面收缩 砍边 半正则 hexagonal mesh facet-shrinking edge-cutting valence semiregular
  • 相关文献

参考文献11

  • 1Catmull E,Clark J.Recursively generated B-Spline surfaces on arbitrary topological meshes[J].Computer Aided Design,1978,10 (6):350-355.
  • 2Loop C.Smooth subdivision surfaces based on triangles[D].University of Utah,Department of Mathematics,1987:33-54.
  • 3Kobbelt L √3 subdivision[C]//Proceedings of Computer Graphics,Annual Conference Series,2000.
  • 4Claes J,Beets K.A corner-cutting scheme for hexagonal subdivision surfaces[C]//International Conference on Shape Modeling and Applications,2002:13-20.
  • 5Akleman E,Srinivasan V.Honeycomb subdivision[C]//17th International Symposium on Computer and Information Sciences,2002.
  • 6Doo D,Sabin M.Analysis of the behavior of recursive division surfaces near extraordinary points[J].Computer Aided Design,1978,10(6):356-360.
  • 7张宏鑫,王国瑾.蜂窝细分(英文)[J].软件学报,2002,13(7):1199-1208. 被引量:10
  • 8Dyn N,Levin D,Simoens J.Face value subdivision schemes on triangulations by repeated averaging[C]//5th International Conference on Curves and Surfaces,2002.
  • 9高翠霞.Hermite型细分曲面算法[D].北京:北京交通大学,2003.
  • 10胡晓宏,郭祎华,刘德华,李益民.六角形网格细分曲面算法介绍[J].计算机应用与软件,2004,21(8):116-118. 被引量:5

二级参考文献20

  • 1[1]Catmull, E.,Clark, J. Recursively generated B-Spline surfaces on arbitrary topological meshes. Computer Aided Design, 1978,10(6):350~355.
  • 2[2]Doo, D., Sabin, M. Behavior of recursive division surfaces near extraordinary points. Computer Aided Design, 1978,10(6): 356~360.
  • 3[3]Loop, C.T. Smooth subdivision surfaces based on triangle . Department of Mathematics, University of Utah, 1987.
  • 4[4]Dyn, N., Levin, D., Gregory, J. A. A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics, 1999,9(2):160~169.
  • 5[5]Kobbelt, L. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. In: Proceedings of the Eurographics'96 (1996). Computer Graphics Forum, 1996,15(3):409~420.
  • 6[6]Kobbelt, L.-Subdivision. In: Proceedings of the Siggraph'2000 (2000). Computer Graphics, 2000. 103~112.
  • 7[7]Ball, A., Storry, D. Conditions for tangent plane continuity over recursively generated B-Spline surfaces. ACM Transactions on Graphics, 1988,7(2):83~102.
  • 8[8]Halstead, M., Kass, M., DeRose, T. Efficient, fair interpolation using catmull-clark surfaces. Computer Graphics, 1993,27(3): 35~44.
  • 9[9]Reif, U. A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design, 1995,12(2): 153~174.
  • 10[10]Zorin, D. Subdivision for modeling and animation. Siggraph 2000 course notes, 2000. http://www.multires.caltech.edu.

共引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部