摘要
提出了一种新的六角形网格的砍边细分算法。该算法通过面收缩和砍边两个过程,使细分网格的数目以4为倍数增长,并选择适当的几何定位使细分曲面保持C1连续性。该算法只适用于顶点的价为3的半正则网格,而对于任意的初始控制网格,算法可以通过预处理使初始网格半正则化。
A new edge-cutting subdivision algorithm for hexagonal meshes is proposed. The algorithm makes the number of the meshes increase by the factor of 4 through two approaches which are facet-shrinking and edge-cutting,and also keeps the subdivision surface C^1 continuous by selecting suitable geometric location. The algorithm only adapts to semiregular meshes whose valence of each vertice is 3,so the arbitrary initial control mesh needs to be semiregularized by preprocessing.
出处
《计算机工程与应用》
CSCD
北大核心
2007年第18期56-58,共3页
Computer Engineering and Applications
关键词
六角形网格
面收缩
砍边
价
半正则
hexagonal mesh
facet-shrinking
edge-cutting
valence
semiregular