期刊文献+

基于遗传算法的结肠癌基因选择与样本分类 被引量:2

Gene selection and classification for microarray data of colon and normal tissues using genetic algorithms
下载PDF
导出
摘要 提出了一种基于两轮遗传算法的用于结肠癌微阵列数据基因选择与样本分类的新方法。该方法先根据基因的Bhattacharyya距离指标过滤大部分与分类不相关的基因,而后使用结合了遗传算法和CFS(Correlation-based Feature Selection)的GA/CFS方法选择优秀基因子集,并存档记录这些子集。根据存档子集中基因被选择的频率选择进一步搜索的候选子集,最后以结合了遗传算法和SVM的GA/SVM从候选基因子集中选择分类特征子集。把这种GA/CFS-GA/SVM方法应用到结肠癌微阵列数据,实验结果及与文献的比较表明了该方法效果良好。 We describe a novel approach for gene selection and cancer classification of microarray data,which combines Support Vector Machines (SVM),Correlation-based Feature Selection(CFS) and Genetic Algorithms(GA).First,the Bhattacharyya distance of each gene is used as the criterion for filtering the irrelevant genes for classification.Then GA combined with CFS is adopted to find informative gene subsets.Finally,using archive records of these subsets,the 50 most frequently selected genes are defined as a candidate subset through which the GA is used to evolve gene subsets whose fitness is evaluated by a SVM classifier.Our method is assessed on the colon dataset and is able to select small subsets and still improve classification accuracy.
作者 何爱香
出处 《计算机工程与应用》 CSCD 北大核心 2007年第18期242-245,共4页 Computer Engineering and Applications
关键词 遗传算法 支持向量机 CFS 基因表达谱 Genetic Algorithms (GA) Support Vector Machines (SVM) Correlation-based Feature Selection (CFS) gene expression profiles
  • 相关文献

参考文献11

  • 1Golub R R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,289:531-537.
  • 2Khan J,Wei J S,Ringner M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural net works[J].Nature Medicine,2001,7(6):637-679.
  • 3Alon U,Barkai N,Notterman D A,et al.Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays[J].Proc Natl Acad Sci Usa,1999,96:6745-6750.
  • 4Ramaswamy S,Golub T R.DNA microarrays in clinical oncology[J].Journal of Clinical Oncology,2002,20(7):1932-1941.
  • 5Furey T S,Cristianini N,Duffy N,et al.Support vector machine classification and validation of cancer tissue samples using microarray expression data[J].Bioinformatics,2000,16(10):906-914.
  • 6Peng S,Xu Q,Ling X B,et al.Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines[J].FEBS Letter,2003,555(2):358-362.
  • 7Wang Y,Makedon F,Ford J C,et al.Hykgene:a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data[J].Bioinformatics,2005,21 (8):1530-1537.
  • 8Guyon I,Weston J,Barnhill S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning,2000,46(13).
  • 9Vapnik V N.Statistical leaning theory[M].New York:Wesley Interscience,1998.
  • 10Li L,Darden T A,Weinberg C R.Gene assessment and sample classification for gene expression data using a genetic algorithm/k nearest neighbor method[J].Bioinformatics,2001,17(12):1131-1142.

同被引文献22

  • 1李颖新,刘全金,阮晓钢.急性白血病的基因表达谱分析与亚型分类特征的鉴别[J].中国生物医学工程学报,2005,24(2):240-244. 被引量:19
  • 2刘全金,李颖新,阮晓钢.基于基因表达谱的结肠癌特征基因选取[J].昆明理工大学学报(理工版),2006,31(1):89-92. 被引量:4
  • 3毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 4Guyon I, Elisseeff A.An introduction to variable and feature selection[J].Mach Learn Res, 2003,3 : 1157-1182.
  • 5Van Dijck C.Speeding up the wrapper feature subset selection in regression by mutual information relevance and redundancy analysis[C]//LNCS4131 : ICANN 2006, Partl, 2006: 31-40.
  • 6Guyon I,Gunn S,Nikravesh M,et al.Feature extraction,foundations and applications[M].Heidelberg:Springer,2006.
  • 7Wang C M, Huang Y F.Evolutionary-based feature selecton ap- proaches with new criteria for data minning: A case study of credit approval data[J].Expert Systems with Applications, 2009, 36: 5900-5908.
  • 8Bins J0 Draper B.Feature selection from huge feature sets[C]// Int Conf Comput Vis,Vancouver,BC,Canda,Jul 2001 : 159-165.
  • 9Zhou Xiaobo,Wang Xiaodong, Dougherty E R.Nonlinear probit gene classification using mutual-information and wavelet-based feature selection[J].Biological Systems,2004,12(3):371-386.
  • 10Estevez P A.Normalized mutual information feature selection[J]. IEEE Transactons on Neural Networks,2009(20).

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部