期刊文献+

一种鲁棒的多目标自动跟踪算法 被引量:3

A robust automatic multi-target tracking algorithm in complex environments
下载PDF
导出
摘要 针对复杂的自然环境,提出了一种能自动初始化目标模型,并能处理目标遮掩问题的多目标实时跟踪算法。该算法在精度和效率方面改进了Mean Shift算法,并结合扩展卡尔曼滤波器对目标进行运动建模,实现了对多目标的实时稳健跟踪。此外,为了自动初始化待跟踪目标模型,提出了一种三层目标链交互结构。该结构能够有效的去除由摄像机抖动以及背景噪声产生的伪目标。在复杂的自然环境下对算法进行了大量的多目标跟踪实验,验证了算法的实时有效性。 A real-time multi-target tracking method is presented in this paper, which can automatically initialise the models of targets and can solve the problems of occlusions ,especially dealing with the tracking under complex natural environment. This method improves the classic Mean Shift method in aspects of precision and efficience, and models the motion of targets by the Extended Kalman Fiter, to stably track multiple targets. Moreover, to initialize the target models automatically, a Tri-MotionRegion-List Interaction structure is proposed, which can efficiently erase out the false targets brought by the camera dithering and background noises. A lot of experiment resuits under complex natural environments show that this method is efficient and performing in real-time.
出处 《信号处理》 CSCD 北大核心 2007年第3期437-440,共4页 Journal of Signal Processing
基金 该论文受国防基础研究项目和西北工业大学博士创新基金(CX200418)的资助。
关键词 多目标跟踪 Mean SHIFT EKF 三层目标链交互结构 自动初始化目标 遮掩处理 Multi-target Tracking Mean Shift EKF Tri-MotionRegion-List Interaction structure Automatic initialization occlusion dealing
  • 相关文献

参考文献8

  • 1Maurin B. , Masoud O. , Papanikolopoulos N. P. ," Camera surveillance of crowded traffic scenes", Proc. ITS America 12th Annual Meeting, pp. 28, Long Beach, CA, Apr. 2002.
  • 2Stauffer C. , Grimson W. ," Learning patterns of activity using real-time tracking", IEEE Trans. Pattern Anal. Machine Intell. , vol. 22, no. 8, pp. 747-757,2000.
  • 3Wren C., Azarbayejani A., Darrell T., Pentland A., “Pfinder: Real-time tracking of the human body”, IEEE Trans. Pattern Anal. Machine Intell. , vol. 19, pp. 780- 785,1997.
  • 4Comaniciu D. , Ramesh V. , Meer P.. Real-Time Tracking of Non-Rigid Objects using Mean Shift. Computer Vision and Pattern Recognition,2000. Proceedings. IEEE Conference on Volume 2,13-15 June 2000 pp. 142-149 vol. 2.
  • 5Comaniciu D. , Ramesh V. , Meer P. , Kernel-based object tracking, Pattern Analysis and Machine Intelligence, IEEE Transactions on Volume 25, Issue 5, May 2003 pp. 564-577.
  • 6Isard M., Blace A. ," Condensation-Conditional density propagation for visual tracking", Intl. J. of Computer Vision, vol. 29, no. 1,1998.
  • 7Hu Min, Hu Weiming, Tan Tieniu,Tracking people through occlusions, Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on Volume 2,23-26 Aug. 2004 pp. 724-727 Vol. 2.
  • 8Zheng Jiangbin, Feng David Dagan, Siu Wanchi, Zhang Yanning, The accurate estracfion and tracking of moving objects for video surveiilance,Proc. Of the 1^st International Conference on Machine Learning and Cybernetics, Beijing, 4-5 Nov. 2002.

同被引文献28

  • 1巴宏欣,赵宗贵,杨飞,曹雷.多传感器多目标跟踪的JPDA算法[J].系统仿真学报,2004,16(7):1563-1566. 被引量:16
  • 2Mei Xiao,Chong-Zhao Han,Lei Zhang.Moving Shadow Detection and Removal for Traffic Sequences[J].International Journal of Automation and computing,2007,4(1):38-46. 被引量:12
  • 3常发亮,刘雪,王华杰.基于均值漂移与卡尔曼滤波的目标跟踪算法[J].计算机工程与应用,2007,43(12):50-52. 被引量:40
  • 4Yao F H,Sekmen A,Malkani M J.Multiple moving target detection,tracking,and recognition from a moving observer[C]//Proceedings of the IEEE International Conference on Information and Automation.New York:IEEE,2008:978-983.
  • 5LEI Bang-jun,XU Li-qun.Real-time out-door video surveillance with robust foreground extraction and object tracking via multi-state transition management[J].Pattern Recognition Letters,2006,27(15):1816-1825.
  • 6Rowe D,Reid I,Gonzàlez J,et al.Unconstrained multiple-people tracking[C]//Proceedings of the 28th DAGM Symposium.Berlin:Springer,2006:505-514.
  • 7Okuma K,Taleghani A,Freitas N,Little J,Lowe D.A boosted particle filter:multitarget detection and tracking[C]//Proceedings of the 8th European Conference on Computer Vision.Berlin:Springer,2004,1:28-39.
  • 8CAI Yi-zheng,Freitas N,Little J.Robust visual tracking for multiple targets[C]//Proceedings of the 9th European Conference on Computer Vision.Berlin:Springer,2006,4:107-118.
  • 9Cox I J,Hingorani S L.An efficient implementation of reid's multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(2):138-150.
  • 10Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部