期刊文献+

AN EXPONENTIAL INEQUALITY FOR AUTOREGRESSIVE PROCESSES IN ADAPTIVE TRACKING

AN EXPONENTIAL INEQUALITY FOR AUTOREGRESSIVE PROCESSES IN ADAPTIVE TRACKING
原文传递
导出
摘要 A wide range of literature concerning classical asymptotic properties for linear models with adaptive control is available, such as strong laws of large numbers or central limit theorems. Unfortunately, in contrast with the situation without control, it appears to be impossible to find sharp asymptotic or nonasymptotic properties such as large deviation principles or exponential inequalities. Our purpose is to provide a first step towards that direction by proving a very simple exponential inequality for the standard least squares estimator of the unknown parameter of Gaussian autoregressive process in adaptive tracking.
作者 Bernard BERCU
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2007年第2期243-250,共8页 系统科学与复杂性学报(英文版)
关键词 Adaptive tracking autoregressive process exponential inequalities least squares MARTINGALES 自适应跟踪 自回归过程 指数不等式 最小面积
  • 相关文献

参考文献14

  • 1G. Bennett, Probability inequalities for the sum of independent random variables, J. Amer. Statist. Assoc., 1962, 57: 33-45.
  • 2W. J. Hoeffding, Probability inequalities sums of bounded random variables, J. Amer. Statist. Assoc., 1963, 58: 713-721.
  • 3C. McDiarmid, Concentration, in Probabilistic Methods for Algorithmic Discrete Mathematics, Mathematics Series: Algorithms and Combinatorics (Ed. by M. Habib, C. McDiarmid, J. Ramirez- Alfonsin, and B. Reed), Vol. 16, Springer-Verlag, Berlin, 1998, 195-248.
  • 4K. Azuma, Weighted sums of certain dependent random variables, Tokuku Math. J., 1967, 19: 357-367.
  • 5D. A. Freedman, On tail probabilities for martingales, Ann. of Probab., 1975, 3: 100-118.
  • 6V. H. De la Pena, A general class of exponential inequalities for martingales and ratios, Ann. of Probab., 1999, 27: 537-564.
  • 7J. S. White, The limit distribution of the serial correlation in the explosive case, Ann. Math. Statist., 1958, 29: 1188-1197.
  • 8B. Bercu, F. Gamboa, and A. Rouault, Large deviations for quadratic forms of stationary Gaussian processes, Stoch. Proc. and Their Appl., 1997, 71: 75-90.
  • 9B. Bercu, On large deviations in the Gaussian autoregressive process: stable, unstable and explosive cases, Bernoulli, 2001, 7: 299-316.
  • 10B. Bercu, Central limit theorem and law of iterated logarithm for the least squares algorithms in adaptive tracking, SIAM J. Control and Optimization, 1998, 36: 910-928.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部