期刊文献+

PEAK COVARIANCE STABILITY OF A RANDOM RICCATI EQUATION ARISING FROM KALMAN FILTERING WITH OBSERVATION LOSSES 被引量:2

PEAK COVARIANCE STABILITY OF A RANDOM RICCATI EQUATION ARISING FROM KALMAN FILTERING WITH OBSERVATION LOSSES
原文传递
导出
摘要 We consider the stability of a random Riccati equation with a Markovian binary jump coefficient. More specifically, we are concerned with the boundedness of the solution of a random Riccati difference equation arising from Kalman filtering with measurement losses. A sufficient condition for the peak covariance stability is obtained which has a simpler form and is shown to be less conservative in some cases than a very recent result in existing literature. Furthermore, we show that a known sufficient condition is also necessary when the observability index equals one.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2007年第2期262-272,共11页 系统科学与复杂性学报(英文版)
关键词 Kalman filtering observation losses Random Riccati equations STABILITY stopping time 随机黎卡提方程 马尔可夫过程 卡尔曼滤波 稳定性 停止时间
  • 相关文献

参考文献8

  • 1H. F. Chen, P. R. Kumar, and J. H. van Schuppen, On Kalman filtering for conditionally Gaussian systems with random matrices, Systems & Control Letters, 1989, 13: 397-404.
  • 2V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, On a stochastic sensor selection algorithm with application in sensor scheduling and sensor coverage, Automation, 2006, 42: 251-260.
  • 3O. C. Imer, S. Yuksel, and T. Basar, Optimal control of LTI systems over unreliable communication links, 2006, 42:1429-1439.
  • 4B. Sinopoli, L. Schemato,M. Franceschetti, K. Polla, M. I. Jordan, and S. S. Sastry, Kalman filtering with intermittent observations IEEE Transactions on Automatic Control, 2004, 49(9): 1453-1463.
  • 5Y. Wang and L. Guo, On stability of random Riccati equation, Science in China (Series E), 1999, 42(2): 136-148.
  • 6M.Huang and S. Dey, Kalman filter with Markovian packet losses and stability criteria, in Proceedings of the 45th Conference on Decision and Control, San Diego, USA, 2006, 5621-5626.
  • 7M. Huang and S. Dey, Stability of Kalman filtering with Markovian packet losses, Automatica, 2007, 43(4).
  • 8P. R. Kumar and P. Varaiya, Stochastic Systems: Estimation, Identification, and Adaptive Control, Prentice Hall, New Jersey, 1986.

同被引文献2

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部