摘要
概述了接触非线性问题的各种分析方法,指出了用Lagrange Discontinous Deformation Analysis(LDDA)求解缝面接触问题有较大优点,与DDA方法比较,它对接缝的处理更真实、更自然;又因为LDDA对全部接触力进行平衡迭代,所以接触力的计算精度也较高;同时,推导了LDDA的基本公式,提出了一个新的计算动接触力的迭代求解算法-改进的Uzawa迭代算法,该算法的松驰因子是依据块体接触的物理特性而非按照数学理论选用的,算例表明:LDDA理论和与之相对应的动接触力的迭代求解算法具有较快的收敛速度和较高的计算精度。为接触问题的计算提供了一个有效的方法和工具。
Lagrange Discontinous Deformation Analysis (LDDA) can be used to solve contact nonlinear problem. Compared with other methods, LDDA has many advantages. First, its joint simulation is truer and more natural then DDA; secondly, its contact force can achieve highly accurate solution due to equilibrium iteration. In this paper, LDDA's primary formulae are derived, a new iterative algorithm for dynamic contact forces is introduced, in which the relax factor is chosen by physical property other than by mathematic theory. The applicotion example indicates that the algorithm has high calculating efficiency. Thusly, an effective measure and implement for contact analysis will be provided.
出处
《工程力学》
EI
CSCD
北大核心
2007年第6期1-6,共6页
Engineering Mechanics
基金
国家自然科学基金资助项目(50479041
90510017
50539100)
关键词
接触非线性
接触力
迭代算法
收敛速度
LDDA
contact non-linear
contact force
iterative algorithm
convergence rate
LDDA