期刊文献+

有界噪声激励下非线性系统吸引子的关联维数估计 被引量:1

ESTIMATION OF CORRELATION DIMENSIONS OF NONLINEAR SYSTEMS UNDER BOUNDED-NOISE EXCITATION
下载PDF
导出
摘要 随机环境下非线性系统的动力学分析是一个复杂而又困难的问题,此时系统响应的随机特性可来自测试误差、系统自身的非线性特点或动力学噪声等因素。讨论了有界噪声对两种不同参数的Holmes型杜芬振子的动力学行为的影响。通过Monte-Carlo和相空间重构方法,给出了此两种模型在受周期激励、有界噪声激励作用下的样本时间序列以及样本响应的关联维数结果。分析表明,外加有界噪声的作用可使系统响应的关联维数增大。 Noise-contaminated dynamic analysis is a complex and difficult topic in nonlinear systems under stochastic background. The random behavior of such systems' responses may come from measure error, nonlinearity or dynamic noise, etc. The effects of bounded-noise excitation on the Duffing oscillator of Holmes type are discussed. Using the Monte-Carlo method and phase space reconstruction skill, the simulation results of system's responses and their corresponding correlation dimensions are presented when the parameters in the system assume two different sets of values. It is shown that the presence of external bounded-noise excitation leads to an increase in the correlation dimension of different attractors.
出处 《工程力学》 EI CSCD 北大核心 2007年第6期43-48,共6页 Engineering Mechanics
基金 国家自然科学基金资助项目(10302025 10672140)
关键词 有界噪声 Holmes型杜芬振子 相空间重构 混沌 关联维数 bounded-noise excitation Duffing oscillator of Holmes type phase space reconstruction chaos correlation dimension
  • 相关文献

参考文献8

二级参考文献13

  • 1朱位秋.随机振动[M].北京:科学出版社,1998..
  • 2J M T Thompson and F A McRobie.Indeterminate bifurcation and the global dynamics of driven oscillators[J].Proceedings of the First European Nonlinear Oscillations Conference,Edwin Krenzer ed.,Academic Verlag,Hamburg,1983,20:107~128.
  • 3S W McDonald,C Grebogi,E Ott and J A Yorke.Fractal basin boundaries[J].Physica D,1985,17:125~153.
  • 4M S Soliman and J M T Thompson.Integrity measures quantifying the erosion of smooth and fractal basins of attraction[J].Journal of Sound and Vibration,1989,35:453~475.
  • 5J M T Thompson,R C T Rainey and M S Soliman.Ship stability criteria based on chaotic transients from incursive fractals[J].Phil Trans R Soc Lond A,1990,332:149~167.
  • 6M S Soliman.Fractal erosion of basins of attraction in coupled nonlinear systems[J].Journal of Sound and Vibration,1995,182:727~740.
  • 7I Senjanovic,J Parunov and G Cipric.Safety analysis of ship rolling in rough sea[J].Chaos,Solitons and Fractals,1997,4:659~680.
  • 8M S T Freitas,R L Viana and C Grebogi.Erosion of the safe basin for the transversal oscillations of a suspension bridge[J].Chaos,Solitons and Fractals,2003,18:829~841.
  • 9Y K Lin and G Q Cai.Probabilistic Structural Dynamics:Advanced Theory and Applications[M].New York:McGraw-Hill,Inc.,1995.
  • 10Gan Chunbiao, Lu Qishao, Huang Kelei.NONSTATIONARY EFFECTS ON SAFE BASINS OF A FORCED SOFTENING DUFFING OSCILLATOR[J].Acta Mechanica Solida Sinica,1998,11(3):253-260. 被引量:5

共引文献81

同被引文献13

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部