摘要
随机环境下非线性系统的动力学分析是一个复杂而又困难的问题,此时系统响应的随机特性可来自测试误差、系统自身的非线性特点或动力学噪声等因素。讨论了有界噪声对两种不同参数的Holmes型杜芬振子的动力学行为的影响。通过Monte-Carlo和相空间重构方法,给出了此两种模型在受周期激励、有界噪声激励作用下的样本时间序列以及样本响应的关联维数结果。分析表明,外加有界噪声的作用可使系统响应的关联维数增大。
Noise-contaminated dynamic analysis is a complex and difficult topic in nonlinear systems under stochastic background. The random behavior of such systems' responses may come from measure error, nonlinearity or dynamic noise, etc. The effects of bounded-noise excitation on the Duffing oscillator of Holmes type are discussed. Using the Monte-Carlo method and phase space reconstruction skill, the simulation results of system's responses and their corresponding correlation dimensions are presented when the parameters in the system assume two different sets of values. It is shown that the presence of external bounded-noise excitation leads to an increase in the correlation dimension of different attractors.
出处
《工程力学》
EI
CSCD
北大核心
2007年第6期43-48,共6页
Engineering Mechanics
基金
国家自然科学基金资助项目(10302025
10672140)
关键词
有界噪声
Holmes型杜芬振子
相空间重构
混沌
关联维数
bounded-noise excitation
Duffing oscillator of Holmes type
phase space reconstruction
chaos
correlation dimension