期刊文献+

高性能混凝土绝热温升影响因素的试验研究 被引量:10

Experimental Investigation on the Adiabatic Temperature Rise of High Performance Concrete
下载PDF
导出
摘要 通过混凝土绝热温升比对试验,探讨了初始温度、粉煤灰、水胶比等因素对混凝土绝热温升的影响。结果表明:混凝土拌和物的初始入模温度对早期的温升速率影响较明显,初始温度越高,温升速率越快,但对混凝土最终的绝热温升值影响很小;粉煤灰等量取代水泥可以使混凝土早期的温升速率减慢,放热峰值推迟出现,但对最终温升值影响很小;胶凝材料用量越多,其早期的温升速率越快,最终的温升值越高。 Temperature rise tests under an adiabatic condition are carried out on a series of high-performance concrete specimens. The adiabatic temperature rise curves are obtained from the specimens with different initiative temperature, different content of fly ash and different water-cement ratio. The results show that the initiative temperature has obvious influence on the temperature rising rate in the early age, but little in the later age. The higher the initiative temperature is, the faster the temperature rising rate. The addition of fly-ash can reduce the temperature rising rate in the early age, but there is no obvious effect in the later age. It is found that an increase in the content of cementitious materials will result in an increase in both the rate of the early temperature rising and the final temperature.
出处 《浙江理工大学学报(自然科学版)》 2007年第4期461-465,共5页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
关键词 高性能混凝土 绝热温升 初始温度 粉煤灰 High-performance concrete Adiabatic temperature rise Initiative
  • 相关文献

参考文献6

二级参考文献15

  • 1COPELAND L E, KANTRO D L, VERBECK G. Chemistry of hydration of Portland cement[A]. In: Fourth International Symposium the Chemistry of Cement[C]. Washington D C: National Bureau of Standards, 1960. 429-465.
  • 2BAZANT Z P. Constructive equation for concrete creep and shrinkage based on thermodynamics of multi-phase system[A]. In: Material and Structures[C]. Paris: RILEM, 1970.3-36.
  • 3刘勇军.[D].南京:河海大学,2002.
  • 4Zhang Ziming, and Garga, V.K.. State of Temperature and Thermal Stresses in Mass Concrete Structure Subjected to Thermal Shock[J]. Dam Engineering, 1996, 7(4): 336-350.
  • 5De Larrard, F., Acker, P., and Roy, R. Le.. Shrinkage Creep and Thermal Properties[C]. Chapter 3, High Performance Concrete: Properties and Applications, edited by Shah, S.P., and Ahmad, S.H., McGraw Hill Inc, 1994, 65-114.
  • 6Copeland, L.E., Kantro, D.L., and Verbeck, G.. Chemistry of Hydration of Portland Cement[C]. Proceedings, Fourth International Symposium on the Chemistry of Cement, Washington, D.C., 1960, National Bureau of Standards Monograph 43, Paper 3, 429-465.
  • 7Tank, R.E., and Carino, N.J.. Rate Constant Function for Strength Development of Concrete[J]. ACI Material Journal, Vol. 88, No.1, Jan.-Feb. 1991, 74-83.
  • 8Bazant, Z.P. Constructive Equation for Concrete Creep and Shrinkage based on Thermodynamics of Multi-phase System[C]. Materials and Structures (RILEM, Paris), 3, 1970, 3-36.
  • 9Standard Practice for Estimating Concrete Strength by Maturity Method[S]. (ASTM C 1074-93), 1996 Annual Book of ASTM Standards, Vol. 04.02, ASTM, West Conshchocken, 529-535.
  • 10Bazant, Z.P. and Wu,S.T.. Thermoviscoelasticity of Aging Concrete[C]. J. Eng.Mech. Div., ASCE, 100, EM3, 1974, 575-597.

共引文献158

同被引文献51

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部