期刊文献+

Cauchy-Vandermonde空间上插值问题的研究 被引量:1

Rational Interpolating In Cauchy-Vandermonde Space
下载PDF
导出
摘要 文章首先给出了Cauchy-Vandermonde空间上带极点的有理插值函数的存在唯一性的一种简单证明,建立了带极点的有理插值函数项表达式并给出了其误差估计.进一步推导了CV插值函数的特殊情形——经典Lagrange插值. We first study the existence and uniqueness of the interpolation by rational functions with prescribed poles in CV space. Then give a new algorithm solving the interpolation problem of multiple nodes and multiple poles, which does not require laborious computation only by solving liner equations. Remainder fonnular also was given. Especially, rational interpolation is classical Lagrange formular.
作者 谭高山
出处 《南京晓庄学院学报》 2007年第3期14-16,共3页 Journal of Nanjing Xiaozhuang University
关键词 CV空间 极点 有理插值 余项 CV space poles rational interpolation remainder formular
  • 相关文献

同被引文献3

  • 1[1]Langer R E.On numerical approximation.Madison:The University of Wisconsin Press,1959:25-43.
  • 2[2]Angel R S,Guillermo L L Approximation of transfer of infinite dimensional dynamical systems by Tational interpolants with prescribed poles.Journal of Mathematical Analysis and Application,2000;244(1):147-168.
  • 3[4]Muehlbach G.Interpolation by Cauchy-Vandermonde systems and applications.Journal of Computational and Applied Mathematics,2000;122(2):203-222.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部