期刊文献+

参数G_2连续保凸插值的充分条件 被引量:2

Sufficient condition of convexity-preserving interpolation with parameter G_2-continuity
下载PDF
导出
摘要 对给定数据点进行曲线、曲面的保形插值,是几何外形设计的一个重点和难点问题,保单调和保凸插值则是保形插值的两个基本问题.本文讨论了Bezier参数曲线G2连续保凸插值的曲率方程求解问题,给出了确定参数曲线控制顶点曲率方程存在惟一上界解的充分条件和几何证明.这种保凸插值曲线的形状可通过曲率因子调整. In geometric shape design, shape-preserving interpolating of curve and surface by given data is an important and difficult subject, and both monotonicity-preserving and convexity-preserving interpolation are two basic problems, In this paper, we discuss solution of curvature equation of convexity preserving interpolation with parameter Bezier curves G^2-continuity, and a suflicient condition and geometric proof are given that in curvature equation of controlling vertex exists a unique upper bound solution. Shape of convexity-preserving interpolation curves can be modified by using curvature values.
作者 雷开彬 杨珂
出处 《西南民族大学学报(自然科学版)》 CAS 2007年第3期443-445,共3页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 保形插值 参数Bezier曲线 几何连续 shape-preserving interpolation parameter Bezier curve geometric continuity
  • 相关文献

参考文献5

二级参考文献22

  • 1方逵.C^k连续的保形插值2k次样条函数[J].数值计算与计算机应用,1994,15(4):299-307. 被引量:15
  • 2Farin G. NURB Curves and Surfaces. Boston: Peters AK, 1995.
  • 3Farin G. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. 2th ed., San Diego: Academic Press,1990.
  • 4Goodman TNT, Unsworth IC Manipulating shape and producing geometric continuity in β-spline curves. IEEE Computer Graphics and Applications, 1986,6:50--56.
  • 5Costantini P. On monotone and convex spline interpolation. Mathematics of Computation, 1986,46:203-214.
  • 6Ancher JC, Gruyer E. Two shape preserving lagrange C^2-interpolants. Numerische Mathematilc, 1993,64:1- 11.
  • 7Manni C, Sablonnière P. Monotone interpolation of order 3 by C^2 cubic splines. IMA Journal of Numerical Analysis, 1997,17(2):305-320.
  • 8Lavery JE. Univariate cubic Lv splines and shape-preserving, multiscale interpolation by univariate cubic L1 splines. Computer Aided Geometric Design, 2000,17(4):319-336.
  • 9Lavery, JE. Shape-Preserving, multiscale interpolation by univariate curvature-based cubic L1 splines in Cartesian and polar coordinates. Computer Aided Geometric Design, 2002,19(4):257-273.
  • 10Cai ZJ. Convergence, error estimation and some properties for four-point interpolation subdivision scheme. Computer Aided Geometric Design, 1995,12(5):459-468.

共引文献23

同被引文献43

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部