期刊文献+

一种基于数据库分解的关联规则挖掘新算法 被引量:3

A New Algorithm for Mining Association Rules Based on Dataset Division
下载PDF
导出
摘要 在Fp-growth算法的基础上,提出了一种新颖的关联规则挖掘算法.该算法将大型数据库分解成频繁1-项集的项总数个子集,然后对分解得到的各个数据库子集用Fp-growth算法进行约束项数据挖掘,待所有数据库子集的约束项数据挖掘进行完毕后,再合并这些约束频繁项得到大型数据库的频繁项集.实验结果表明新算法所采用的数据库划分策略克服了FP-growth算法对大型数据库进行挖掘时,占用内存大,运行速度慢的不足,是一种适合于大型数据库的关联规则挖掘算法. Fp-growth algorithm has disadvantages such as lower space utilization rate and slower execution time when mining the large datasets. To overcome these drawbacks, based on the Fp-growth algorithm, this paper proposed a new algorithm for mining association rules from large datasets. The algorithm adopts a new strategy to divide the large datasets into many subsets, and then, carries out constrained frequent item sets mining for each subset. Experiments have been conducted to compare the proposed algorithm with the Fp-growth algorithm. Experimental results show that the algorithm has lower memory usage, and is faster than the Fp-growth algorithm when the datasets is very large.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2007年第2期30-34,共5页 Journal of Natural Science of Hunan Normal University
基金 国家技术创新资助项目[国经贸技术(2002)845号]
关键词 大型数据库 关联规则 数据库分解 数据挖掘 约束频繁项挖掘 FP-GROWTH large dataset assoeiation rule division of dataset data mining constrained frequent item sets mining Fp-growth
  • 相关文献

参考文献8

  • 1AGRAWAL R, IMIELIENSKI T, SWAMI A. Mining association rules between sets of items in large databases[ A]//Proc of ACM SIGMOD int Conf on Management of Data, 1993,2:207-216.
  • 2AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[ A]//Proc 1994 Int Conf Very Large Data Bases(VLDB'94) [ C ]. USA: Kaufmann, 1994:487-499.
  • 3AGRAWAL R, SRIKANT R. Mining sequential patterns[ A]//Proe 11 th Int Conf on Data Engineering[ C]. Taiwan:Taipei, 1995:3-14.
  • 4PARK J S, CHEN M S, YU P S. An effective hash-based algorithm for mining association rules[A]//Proc 1995 ACM-SIGMOD Int Conf Management of Data[C]. San Jose: ACM Press, 1995 : 175-186.
  • 5SAVASERE A, OMIECINSKI E, NAVATHE S. An efficient algorithm for mining association rules in large databases[A]//Proc 1995 Int Conf Very Large Data Bases(VLDB 95) [ C ]. Switzerland: Zurich, 1995 : 432-443.
  • 6SRIKANT R, AGRAWAL R. Mining quantitative association rules in large relational tables[ A]//Proc 1996 ACM SIGMOD int Conf on Management of Data[C] .USA:ACM Press, 1996:1-12.
  • 7CHEUNG D W,HAN J,NG V, et al .Maintenance of discovered association rules in large databases: An incremental updating technique [A]//Proc 12th Int Conf on Data Engineering[C] .New Orleans:Louisian,1996.
  • 8HAN, MICHELINE K. Data mining: concepts and techniques[ M ]. Simon Fraser University : Morgan Kaufmann Publishers ,2000.

同被引文献5

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部