期刊文献+

胶原杂化去抗原松质骨载体复合自体间充质干细胞修复骨软骨缺损 被引量:2

Collagen hybridized antigen-extracted cancellous bone scaffold supplemented with autologous mesenchymal stem cells to treat osteochondral defect
原文传递
导出
摘要 目的制备胶原杂化去抗原松质骨载体并复合自体间充质干细胞修复关节骨软骨缺损。方法脱脂、脱蛋白和脱钙的方法来制备去抗原松质骨载体,酸解-酶解法制备胶原进而杂化松质骨载体。扩增间充质干细胞,接种到胶原杂化松质骨载体,植入左膝关节(实验侧),右膝关节植入没有复合细胞的胶原杂化去抗原松质骨载体(对照侧),在第6、12、24、48周时结合Pineda评分观察实验侧和对照侧的骨软骨缺损的组织修复情况。结果实验侧自12周时出现初步的软骨表型,24周时最为明显,48周有部分退变;软骨下骨部分逐渐恢复。对照侧软骨缺损一直以纤维组织充填,软骨下骨有部分恢复。上述各时间点实验侧和对照侧的Pineda评分为16.600±0.966,17.600±0.699(6周);6.600±0.M3、14.800±0.789(12周);3.300±0.483、13.600±0.843(24周);3.500±0.527、14.100±0.876(48周),差异均有统计学意义(P<0.05)。结论胶原杂化的去抗原松质骨载体复合自体间充质干细胞能够修复关节的骨软骨缺损。 Objective To prepare collagen hybridized antigen-extracted cancellous bone supplemented with autologous mesenchymal stem cells and apply it to treat osteochondral defect. Methods Antigen-extracted cancellous bone was prepared by degreasing, deproteinization and decalcification. Collagen type I was produced by means of acidolysis and enzymolysis and used to hybridize the resulting cancellous bone scaffold. Antologous mesenchymal stem cells were harvested, expanded and seeded in the collagen hybridized antigen-extracted cancellous bone scaffold to repair osteochondral defect in the left knee ; and as an auto-control,the right knee of the same rabbit was implanted with a same scaffold that was cell-free. Reparative profile of the defect was assessed by histological examination and Pineda score at regular intervals of 6th, 12th,24th and 48th week. Results The reparative tissue on the experimental side began to take on chondrogenic phenotype at 12th week,improved at 24th week and degraded partially at 48th week, and the subchondral bone was restored gradually. However, on the control side,the defects were filled with fibrous tissue throughout the 48 week and the subchondral bone was not reconstructed completely. Pineda score revealed statistical difference between the experimental and the control sides at each time point, namely, 16. 600 ± 0.966 va 17. 600 ± 0. 699 (6th week) ; 6. 600 ± 0. 843 vs 14. 800 ± 0. 789 ( 12th week) ; 3. 300 ±0.483 vs 13. 600 ±0.843 (24th week) ;3. 500 ± 0. 527 vs 14. 100 ± 0. 876 (48th week) respectively. Conelusion The collagen hybridized antigen-extracted cancellous bone scaffold supplemented with autologous mesenchymal stem ceils can be used to treat osteochondral defect without osteogenic and chondrogenic induction in vitro.
出处 《中华实验外科杂志》 CAS CSCD 北大核心 2007年第6期652-655,I0002,共5页 Chinese Journal of Experimental Surgery
基金 全军医药卫生科研基金课题资助项目(01Z079)
关键词 松质骨 胶原 间充质干细胞 Cancellous bone Collagen Mesenchymal stem cells
  • 相关文献

参考文献16

  • 1孙效棠,赵黎,胡蕴玉,李丹,袁志,崔庚,杜俊杰.磷酸钙骨水泥载药核心的块型重组合异种骨体内缓释及修复兔长段感染性骨缺损的研究[J].中国修复重建外科杂志,2005,19(3):165-169. 被引量:15
  • 2Pineda S, Pollack A, Stevenson S, et al. A semiquantitative scale for histologic grading articular cartilage repair. Acta Anan, 1992, 143: 335-340.
  • 3Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann NY Acad Sci, 2001,938 : 231-233.
  • 4Moretti M,Wendt D, Dickinson SC,et al. Effects of in vitro preculture on in vivo development of human engineered cartilage in an ectopic model. Tissue Eng,2005,11 : 1421-1418.
  • 5Stangenberg L, Schaefer D J, Buettner O, et al. Differentiation of osteoblasts in three-dimensional culture in processed cancellous bone matrix: quantitative analysis of gene expression based on real-time reverse transcription- polymerase chain reaction. Tissue Eng,2005,11 : 855-864.
  • 6Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, et al. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials, 1998,19 : 1405-1412.
  • 7Freed LE, Grande DA, Lingbin Z, et al. Joint resurfacing using allograft chondrocytes and synthetic biodegradablepolymer scaffolds. J Biomed Mater Res, 1994,28:891-899.
  • 8Ball ST, Goomer RS, Ostrander RV, et al. Preincubation of tissue engineered constructs enhances donor cell retention. Clin Orthop Relat Res,2004,420 : 276 -285.
  • 9Oshima Y, Watanabe N, Matsuda K, et al. Behavior of transplanted bone marrow-derived GFP mesenchymal cells in osteochondral defect as a simulation of autologous transplantation. J Histochem Cytochem, 2005,53:207-216.
  • 10Hagerty RF, Braid HL, Bonner WM Jr,et al. Viable and nonviable human cartilage homografts. Surg Gynecol Obstet, 1967,125:485-492.

二级参考文献31

  • 1Schaefer D,Martin I,Shastri P,et al.In vitro generation of osteochondral omposites.Biomaterials,2000,21:2599-2606.
  • 2Chen FS,Frenkel SR,DiCesare PE.Repair of articular cartilage defects:part Ⅱ.Treatment options.Am J Orthop ,1999,28:88-96.
  • 3Schaefer D,Martin I,Jundt G,et al.Tissue-engineered composites for the repair of large osteochondral defects.Arthritis Rheum,2002 ,46:2524-34.
  • 4Sherwood JK,Riley SL,Palazzol OR,et al.A three一dimensional osteochondral compsite scaffold for articular Cartilge repair.Biomaterials,2002,23:4739-4751.
  • 5Kreklau B,Sittinger M,Mensing MB,et al.Tissue engineering of biphasic joint cartilage transplants.Biomaterials,1999,20:1743-1749.
  • 6Arinzeh TL, Peter SJ, Archambault MP, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg(Am), 2003,85(10):1927-1935.
  • 7Ooms EM, Wolke JG, van de Heuvel MT, et al. Histological evaluation of the boneresponse to calcium phosphate cement implanted in cortical bone. Biomaterials,2003,24(6):989-1000.
  • 8Ooms EM, Egglezos EA, Wolke JG,et al. Soft-tissue response to injectable calcium phosphate cements.Biomaterials,2003,24(5):749-757.
  • 9Ooms EM, Wolke JG, van der Waerden JP, et al.Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J Biomed Mater Res,2002,61(1):9-18.
  • 10Meraw SJ, Reeve CM, Lohse CM, et al.Treatment of peri-implant defects withcombination growth factor cement. J Periodontol, 2000,71(1):8-15.

共引文献48

同被引文献36

  • 1郝伟,胡蕴玉,魏义勇,姜明,庞龙,白建萍,吕荣,王军.脂肪干细胞/Ⅰ型胶原凝胶复合体的构建及其体内外成骨分化研究[J].中华实验外科杂志,2007,24(6):659-661. 被引量:15
  • 2Kruyt MC, Dhert WJ, Oner FC, et al. Analysis of ectopic and orthotopic bone formation in cell-based tissue-engineered constructs in goats. Biomaterials, 2007,28:1798-1805.
  • 3Ekelund A, Brosjo O, Nilsson OS. Experimental induction of heterotopic bone. Clin Orthop, 1991,263 : 102.
  • 4Wang G, Bunnell BA, Painter RG, et al. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: Potential therapy for cystic fibrosis. Proe Natl Aead Sci USA ,2005,102 : 186-191.
  • 5Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells. Science, 2004, 306 : 1568-1571.
  • 6Liu C, Chen Z, Chen Z, et al. Multiple tumor types may originate from bone marrow-derived cells. Neoplasia,2006,8:716 - 724.
  • 7Serakinci N, Guldberg P, Burns JS, et al. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene ,2004,23:5095-5098.
  • 8Hombauer H, Minguell JJ. Selective interactions between epithelial tumor cells and bone marrow mesenchymal stem cells. Br J Cancer,2000,82 : 1290-1296.
  • 9Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature ,2004,432:324-337.
  • 10Tolar J, Nauta A J, Osbom M J, et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells,2007,25 : 371-379.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部