摘要
在再生核空间中,利用升元的方法将一类非线性常微分方程u″+N(u,u')=f(x)0≤x≤1 u(0)=0,u'(0)=1转化为二维线性算子方程Lv=f.通过构造零空间的一组标准正交基,得到了线性算子方程Lv=f的所有解的表达形式.如果该方程的解存在且唯一,文章给出了该方程的精确解的形式表示.并进一步给出了该方程的ε近似解.数值实验表明所给的方法是有效的.
In the paper,{u″+N(u,u′)=f(x) 0≤x≤1 u(0)=0,u′(0)=1 is transformed into a two- dimension linear operator equation Lv = f in reproducing kernel spaces by using the method of increasing variable. The representation of all the solutions for the equation Lv = f is obtained through constructing a standard orthogonal basis of null space N (L). If the solution of the equation is existent and unique, the exact solution of the equation is given. Further, the ε approximate solution is introduced of the equation. The final numerical experiment shows that our method is effective.
出处
《淮北煤炭师范学院学报(自然科学版)》
2007年第2期16-19,共4页
Journal of Huaibei Coal Industry Teachers College(Natural Science edition)
基金
黑龙江省教育厅科学技术基金项目(10553083)
黑龙江科技学院科技基金项目(05-29)
关键词
非线性常微分方程
再生核
ε-近似解
nonlinear ordinary differential equation
reproducing kernel
ε- approximate solution