期刊文献+

具有分离扩散的两种群Lotka-Volterra模型的持久性 被引量:7

The Persistence of Two Species Lotka-Volterra Model with Diffusion
下载PDF
导出
摘要 本文考虑具有分离扩散的捕食-被捕食系统的持续性。此模型由两种群组成,其中被捕食种群可在两个生态环境中生存,而捕食种群仅能在一个生态环境中生存,两种群的动态行为都用Lotka-Volterra模型来描述。得到了系统强持续的充分必要条件,并证明了无论无扩散时系统是共存的,还是主导的都可以适当选择分离扩散系数使整个系统强持续。 In this paper,the authors consider a model in which need to forage and the need to avoid predated ane in conflict. The medel is composed two Lotka-Volterra patches.The system has two species, one can diffuse betteen two patches,but the other is confined to one of the patches and can not diffuse. the authors obtain the necessary and sufficent condition of the strong persistence of the system,and prove that the system can be made strong persistence under appropriate diffusion conditions that ensure the in stability of boundary equilibria,even if the preypredator patch is not persist without diffusion.
出处 《生物数学学报》 CSCD 1997年第1期52-59,共8页 Journal of Biomathematics
关键词 数学生态学 种群 扩散 Lotka-Volerra 模型 Strong persistence,extinction,diffusion
  • 相关文献

参考文献2

  • 1马知恩,Math Biosci,1990年,75页
  • 2陈兰荪,数学生态学模型与研究方法,1988年,274页

同被引文献28

  • 1崔景安.具有扩散和时滞的捕食系统的持续生存[J].数学学报(中文版),2005,48(3):479-488. 被引量:5
  • 2陈兰荪 陈键.非线性生物动力系统[M].北京:科学出版社,1988..
  • 3ALLEN L J S. Persistence and extinction in Lotka-Volterra reaction-diffusion equations[J]. Math Biosci, 1983,65:1-12.
  • 4BERETTA E,SOLIMANO F. Global stability and periodic orbits for two patch predator-prey diffusion delay models [J]. Math Biosci, 1987,85 :153-183.
  • 5BERETTA E,TAKEUCHI Y. Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delays[J]. SIAM J Appl Math, 1988,48 : 627-651.
  • 6FREEDMAN H I,TAKEUCHI Y. Predator surval versus extinction as a function of dispersal in a predator-prey model with patchy environment[J]. Appl Anal, 1989,31:247-266.
  • 7FREEDMAN H I,TAKEUCHI Y. Global stability and predator dynamics in a model of prey dispersal in a patchy environment[J]. Nonlinear Anal,TMA, 1989,13 :993-1 002.
  • 8FREEDMAN H I,WALTMAN P. Mathematical models of population interaction with dispersal. I. Stability of two habitats with and without a predator[J]. SIAM J Math, 1977,32:631-648.
  • 9KUANG Y,TAKEUCHI Y. Predator-prey dynamics in models of prey dispersal in two-patch environments[J]. Math Biosci, 1994,120 : 77-98.
  • 10TAKEUCHI Y. Global dynamical properties of Lotka-Volterra systems[M]. Singapore: World Scientific, 1996.

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部