期刊文献+

城市路网短期行程时间预测研究 被引量:1

Short-term Travel Time Prediction for Urban Networks
下载PDF
导出
摘要 提出了一种基于状态空间神经网络(SSNN)和拓展卡尔曼滤波(EKF)的混合式行程时间预测模型.以往的研究表明,状态空间神经网络能够较好地处理复杂的非线性时空问题.然而,状态空间神经网络需要大量的历史数据作为离线训练之用.其不足之处在于,首先是需要花费大量的时间和精力去收集、准备数据,以及训练神经网络.其次,输入输出随着时间不断增加,训练过程需要不断的从新重复.为了提高状态空间神经网络的有效性,扩展卡尔曼滤波代替了传统的方法来对神经网络进行训练.荷兰的一条城市道路被选择为模型验证的试验路段.通过与另外两个预测模型之间的对比验证,该模型的预测能力能够达到满意的有效性、准确性和鲁棒性. This paper presents a hybrid model for urban arterial travel time prediction based on the so-called state space neural networks (SSNN) and the extended Kalman Filter (EKF). Previous research shows that the SSNN is able to deal with complex nonlinear spatio-temporal problems. However, the SSNN models required offline training with large data sets of input-output data. The main drawbacks of such a requirement are, first, the amount of time and effort involved in collecting, preparing and executing these training sessions. Second, as the input-output mapping changes over time, the model requires complete retraining. To improve the effectiveness of SSNN, the extended Kalman Filter is proposed to train the SSNN instead of conventional approaches. A densely used urban arterial in Netherlands was selected to test the performance of this model. This paper has compared the performance of this proposed model with two existing models. The results of the comparisons indicate that this proposed model is capable of dealing with complex nonlinear urban arterial travel time prediction with satisfying effectiveness, robustness, and reliability.
出处 《交通运输系统工程与信息》 EI CSCD 2007年第3期118-124,共7页 Journal of Transportation Systems Engineering and Information Technology
基金 国家高技术研究发展计划(863计划)课题"基于提取计算的路网动态交通分析技术"(2006AA112206)
关键词 行程时间预测 状态空间神经网络 扩展卡尔曼滤波 travel time prediction state space neural network extended kalman filter
  • 相关文献

参考文献7

  • 1Palacharla P V and Nelson P C.Application of fuzzy logicand neural networks for dynamic travel time estimation[].The International Trade Journal.1999
  • 2D’Angelo M P,Al-Deek H M&Wang M C.Travel-timeprediction for freeway corridors[].Transportation Re-search Record.1999
  • 3Dharia A and Adeli H.Neural network model for rapidforecasting of freeway link travel time[].Engineering Ap-plications of Artificial Intelligence.2003
  • 4Park D,Rilett L R and Han G.Spectral basis neural net-works for rel-time travel time forecasting[].Journal ofTransportation EngineeringNov/Dec.1999
  • 5Ishak S,ASCE M,Alecsandru C.Optimizing traffic predic-tion performance of neural networks under various topological,input,and traffic condition settings[].Journal of Transpor-tation EngineeringJuly.2004
  • 6Park D and Rilett L R.Forecasting multiple-period free-way link travel times using modular neural networks[].Transportation Research Record.1998
  • 7Ishak S&Al-Deek H.Performance evaluation of short-term time-series traffic prediction model[].Journal ofTransportation Engineering.2002

同被引文献11

  • 1于德新,杨兆升,刘雪杰.城市交通流诱导系统中的路段行程时间间接预测方法研究[J].交通与计算机,2006,24(6):18-21. 被引量:5
  • 2交通工学研究会 董国良 译.智能交通系统[M].北京:人民交通出版社,2000..
  • 3杨兆升.城市交通流诱导系统理论及模型[M].北京:人民交通出版社.2002.
  • 4Ishak S,A1-Deek H. Performance Evaluation of Short-Term Time-Series Traffic Prediction Model [ J]. Joumal of Transportation Engineering, 2002,128 ( 6 ) :490 - 498.
  • 5Angelo M P, AL-Deek H M , Wang M C. Travel-Time Prediction for Freeway Corridors[ R]. Washingon D. C. :Transportation Research Record 1676, 1999:184 - 191.
  • 6Chandra Mouly Kuchipudi, Steven I J chien. Development of a Hybrid Model for Dynamic Travel Time Prediction [ C ]//Proceedings of the 81 th Annual Meeting of the Transportation Research Board. Washington D. C. : National Academies Press, 2002.
  • 7Lin Weihua, Amit Kulkarni , Pitu Mirehandani. Arterial Travel Time Estimation for Advanced Traveler Information Systems [ C ]// Proceedings of the 82th Annum Meeting of the Transportation Research Board. Washington D. C. : National Academies Press, 2003.
  • 8Steve Robinson, John W Polak. Modeling Urban Link Travel Time with Inductive Loop Detector Data by Using the k-NN Method [ J ]. Transportation Research Record: Journal of the Transportation Research Board, 2005,71:47 -56.
  • 9UI S, Bajwa I, Kuwallara M. A Travel Time Prediction Method Based on Pattern Matching Technique [ C ]//Proceedings of the 21 st ARRB and 11 th REAAA Conference. Cairns: ARRB Group Limited , 2003.
  • 10Van Lint J W C. Reliable Travel Time Prediction for Freeways[ M]. Delft: Delft University Press, 2004.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部