期刊文献+

一种基于标准混合高斯模型的快速人脸检测方法 被引量:6

Method for fast face-detection based on normalization Gaussian mixture model
下载PDF
导出
摘要 针对室内移动机器人运动过程提出一种快速而稳定的人脸检测方法.由于室内存在多种物体,背景不断变化,且光照条件可能不断变化,提出采用人脸肤色的标准混合高斯模型与人眼特征相结合的人脸检测法,无需对原始图像进行尺度变换.检测过程首先将经过补光处理及光线增强的人脸库转换到YCbCr空间,求其非线性变换空间YCb′Cr,′求出左右脸标准正态密度函数及混合高斯分布;然后根据人眼颜色特征,分别对人脸肤色候选区域进行人眼候选区域提取,利用人眼Gabor模板的不变Hu矩与人眼候选区域的相关性,找出人眼拟合矩形区域,再综合利用人眼与人脸的特征关系以及人脸候选区域的投影关系检测出人脸区域.大量实验表明,新方法速度快,适应性较好,并可扩展检测到侧面人脸. An effective and fast method of face detection for a service robot is proposed, which combines a mixture of Gaussian distribution model of skin tone color with eyes features. Candidate skincolor regions over the entire image are extracted based on normal Gaussian distributions models of left and fight faces in a nonlinearly transformed YCb Cr color space, following the light compensation and enhancement procedures. Eyes candidates are located in the candidate skin regions by using different contrasts in color between the eyes and face skins, and Gabor filtered Hu-moments of those are produced as statistical features for further identification of the eyes. Combining the projection histogram of skin-color regions and detected eyes features, the faces regions are accurately located. Experimental results demonstrate that the proposed method is effective and fast to detect both frontal and profile faces with robustness of lighting fluctuations and background clutters.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第3期389-394,共6页 Journal of Southeast University:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)资助项目(2002CB312200) 国家高技术研究发展计划(863计划)资助项目(2004AA420110)
关键词 人脸检测 混合高斯模型 GABOR变换 人眼特征 移动机器人 face detection mixture-Gaussian model Gabor transform eyes features mobile robot
  • 相关文献

参考文献13

  • 1Jain Anil K,Hsu Rein-Lien.Face detection in color image[M].Michigan:Michigan State University,2002:5-8.
  • 2艾海舟,梁路宏,徐光祐,张钹.基于肤色和模板的人脸检测[J].软件学报,2001,12(12):1784-1792. 被引量:64
  • 3Taigun L,Sung-Kee P,Mignon P.An effective method for detecting facial features and face in human-robot interaction[J].Information Sciences,2006,176(21):3166-3189.
  • 4Chiang Cheng-Chin,Tai Wen-Kai,Yang Mau-Tsuen,et al.A novel method for detecting lips,eyes,and faces in real times[J].Real-Time Imaging,2003,9(4):277-287.
  • 5Solina Franc,Peer Peter,Batagelj Borut,et al.Color-based face detection in the "15 seconds of fame" art installation[C]//Conference on Computer Vision/Computer Graphics Collaboration for Model-based Imaging,Rendering,Image Analysis and Graphical Special Effects.Mirage,France:Wilfried Philips,Rocquencourt,INRIA,2003:38-47.
  • 6Pham The Bao,Jin Young Kim,Seung You Na.Fast multi-face detection in color images using fuzzy logic[C]//Proceedings of 2005 International Symposium on Intelligent Signal Processing and Communication Systems.Hong Kong,2005:777-780.
  • 7Karungaru Stephen,Fukumi Minoru,Akamatsu Norio.Detection of human faces in visual scenes[C]//Intelligent Information Systems Conference.Perth,Australia,2001:165-170.
  • 8Liu Chengjun.A Bayesian discriminating features method for face detection[J].IEEE Trans Pattern Analysis and Machine Intelligence,2003,25(6):725-740.
  • 9Eickeler S.Face database retrieval using pseudo 2D hidden Markov models[C]//Proceeding of Conference on Automatic Face and Gesture Recognition.Washington D C,USA,2002:65-70.
  • 10Jin Hongliang,Liu Qingshan,Lu Hanqing,et al.Face detection using one-class SVM in color images[C]// International Conference on Signal Processing.Beijing,China,2004:1431-1434.

二级参考文献4

  • 1Liang Luhong,计算机学报,2000年,23卷,6期,640页
  • 2Wu H,IEEE Transactions Pattern Analysis Machine Intelligence,1999年,21卷,6期,557页
  • 3Sung K,IEEE Transactions Pattern Analysis Machine Intelligence,1998年,20卷,1期,39页
  • 4梁路宏,艾海舟,何克忠,张钹.基于仿射模板匹配的多角度单人脸定位[J].计算机学报,2000,23(6):640-645. 被引量:21

共引文献77

同被引文献36

  • 1赵丽红,孙晓琳,王宇飞,徐心和.基于肤色的人脸检测[J].工程图学学报,2005,26(3):84-88. 被引量:9
  • 2王智文.基于改进BP神经网络的车牌字符识别研究[J].广西工学院学报,2006,17(3):86-88. 被引量:7
  • 3Kortenkamp D, Huber E, Bonasso R P. Recognizing and interpreting gestures on a mobile robot[ A]. In: Proceedings of the 13th National Conference on Artificial Intelligence[ C], Portland, USA, 1996:915- 921.
  • 4Waldherr S, Romero R, Thrun S. A gesture based interface for human-robot interaction [ J ]. Autonomous Robots, 2000, 9 (2) : 151- 173.
  • 5Stiefelhagen R, Fugen C, Gieselmann P, et al. Natural human-robot interaction using speech, head pose and gestures[ A ]. In : Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems[ C] , Sendai, Japan, 2004:2422-2427.
  • 6Richarz J, Martin C, Scheidig A, et al. Estimating pointing gestures in monocular images for mobile robot instruction[ A]. In: Proceedings of IEEE International Symposium on Robot and Human Interactive Communication[ C ], Hatfield, UK, 2006:546-550.
  • 7Boehme H J, Branmann U D, Corradini A, et al. Person localization and posture recognition for human-robot interaction [ A ]. In : Proceedings of the International Gesture Workshop on Gesture-Based Communication in Human-Computer Interaction [ C ], London, Springer-Verlag,1999: 117-128.
  • 8Kuno Y, Murashima T, Shimadat N, et al. Understanding and learning of gestures through human-robot interaction [ A ]. In : Proceedings of IEEE/ RSJ International Conference on Intelligent Robots and Systems[ C ] , Takamatsu, Japan, 2000:2133-2138.
  • 9Platt J C, Cristianini N. Large margin DAGs for muhiclass classification [ J ]. Advances in Neural Information Processing Systems, 2000, 12(3): 547-553.
  • 10Hsu C W, Lin C J. A comparison of methods for multi-class Support Vector Machines[ J ]. IEEE Transactions on Neural Networks, 2002, 13(2) :415-425.

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部