期刊文献+

基于参数变分原理的Cosserat连续体弹塑性分析 被引量:5

PARAMETRIC VARIATIONAL PRINCIPLE BASED ELASTIC-PLASTIC ANALYSIS OF COSSERAT CONTINUUM
下载PDF
导出
摘要 基于参数变分原理,提出了Cosserat模型弹塑性计算的算法,给出了基于Cosserat理论的参数最小势能原理,基于所提出的变分方程,建立了Cosserat理论弹塑性分析的参数二次规划模型,进一步将算法应用于平面应变软化问题计算中,获得的结果具有良好的非网格依赖性. A new algorithm is developed based on the parametric variational principle for elastic-plastic analysis of Cosserat continuum. The governing equations of classic elastic-plastic problem are regularized by adding rotational degrees of freedom to the conventional translational degrees of freedom in conventional continuum mechanics. The parametric potential energy principle of Cosserat theory is developed, from which the finite element formulation of Cosserat theory and the corresponding parametric quadratic programming model are constructed. Strain localization problems are computed and the mesh independent results are obtained.
出处 《固体力学学报》 EI CAS CSCD 北大核心 2007年第2期157-163,共7页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金与创新群体基金(50679013 10421202 10225212) 长江学者和创新团队发展计划 国家基础性发展规划项目(2005CB321704)资助
关键词 Cosserat模型 参数变分原理 二次规划算法 应变软化 Cosserat model, parametric variational principle, quadratic programming method, strain localization
  • 相关文献

参考文献2

二级参考文献11

  • 1张洪武,张新伟.A COMBINED PARAMETRIC QUADRATIC PROGRAMMING AND PRECISE INTEGRATION METHOD BASED DYNAMIC ANALYSIS OF ELASTIC-PLASTIC HARDENING/SOFTENING PROBLEMS[J].Acta Mechanica Sinica,2002,18(6):638-648. 被引量:3
  • 2李兴斯.一类不可微优化问题的有效解法[J].中国科学(A辑),1994,24(4):371-377. 被引量:137
  • 3Christensen P W. A semi-smooth Newton method for elast-plastic contact problems. International Journal of Solids and Structures, 2002, 39: 2323~2341
  • 4F Tin-Loi, S H Xia. Nonbolomomic elastoplastic analysis involving unilateral frictionless contact as a mixed complementarity problem. Computer Methods in Applied Mechanics and Egineering, 2001, 190: 4551~4568
  • 5钟万勰,张洪武,吴承伟.参变量变分原理及其在工程中的应用.北京:科学出版社,1997
  • 6Zhang H W, Zhong W X, Gu Y X. A combined parametric quadratic programming and iteration method for 3D elstic-plastic frictional contact problem analysis. Comput Meths Appl Mech, 1998, 155: 307~324
  • 7Billups S C, Murty K G. Complementarity problems. Journal of Coputational and Applied Mathematics, 2000, 124: 303~318
  • 8Wright S J. Primal-Dual Interior-Point Methods. Philadelphia: SIAM Publications, 1997
  • 9Zmitrowicz A. Mathematical descriptions of orthotropic friction. Int J Solids Structures, 1989 25(8): 837~862
  • 10Mróz Z, Stupkiewicz S. An orthotropic friction and wear model. Int J Solids Structures, 1994 31(8): 1113~1131

共引文献25

同被引文献34

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部