摘要
基于参数变分原理,提出了Cosserat模型弹塑性计算的算法,给出了基于Cosserat理论的参数最小势能原理,基于所提出的变分方程,建立了Cosserat理论弹塑性分析的参数二次规划模型,进一步将算法应用于平面应变软化问题计算中,获得的结果具有良好的非网格依赖性.
A new algorithm is developed based on the parametric variational principle for elastic-plastic analysis of Cosserat continuum. The governing equations of classic elastic-plastic problem are regularized by adding rotational degrees of freedom to the conventional translational degrees of freedom in conventional continuum mechanics. The parametric potential energy principle of Cosserat theory is developed, from which the finite element formulation of Cosserat theory and the corresponding parametric quadratic programming model are constructed. Strain localization problems are computed and the mesh independent results are obtained.
出处
《固体力学学报》
EI
CAS
CSCD
北大核心
2007年第2期157-163,共7页
Chinese Journal of Solid Mechanics
基金
国家自然科学基金与创新群体基金(50679013
10421202
10225212)
长江学者和创新团队发展计划
国家基础性发展规划项目(2005CB321704)资助
关键词
Cosserat模型
参数变分原理
二次规划算法
应变软化
Cosserat model, parametric variational principle, quadratic programming method, strain localization