期刊文献+

基于梯度和MRF模型的视差估计算法 被引量:2

Disparity estimation based on the gradient and MRF model
下载PDF
导出
摘要 提出一种基于梯度和MRF(Markov Random Field)模型的视差估计及优化算法.采用图像灰度和梯度加权联合的方法进行块匹配运算,获得初始视差场.然后根据顺序匹配准则对该视差场进行交叉块检测,并运用基于MRF模型的因果预测对误匹配块进行迭代校正,最终获得较为精确平滑的视差场.实验表明,与传统块匹配法相比,该算法生成的视差场能够将预测图像峰值信噪比提高1.2~1.8dB,且运算时问在1s以内. This paper presents a novel disparity estimation algorithm based on the gradient and Markov Random Field (MRF) model. First, the block matching algorithm combining gray and gradient information is adopted to obtain an initial disparity field. Second, an order matching constraint is applied to detect cross regions in the disparity-map. Finally, the erroneously matched blocks are corrected iteratively by MRF-based causality prediction to achieve a more accurate disparity field. Experimental results show that the proposed algorithm achieves a PSNR gain(about 1.2-1.8 dB) as compared to the conventional block-based method and its calculating time is less than 1 s.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2007年第3期373-376,447,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60472083)
关键词 立体匹配 视差场 梯度 交叉检测 MARKOV随机场 stereo match disparity field gradient cross detection Markov random field
  • 相关文献

参考文献1

二级参考文献8

  • 1Aydmoglu H, Hayes M H. Stereo Image Coding: a Projection Approach[J]. IEEE Trans on Image Processing, 1998, 7(4): 506-516.
  • 2Strintzis M G, Malnssiotis S. Object-based Coding of Stereoscopic and 3D Image Sequences[J]. IEEE Signal Processing Magazine,1999,16(3):14-28.
  • 3Gunatilake P D, Siegel M W, Jordan A G. Compression of Stereo Video Streams[EB/OL]. http://citeseer.nj.nec.com/cs, 2002-10-20.
  • 4Malassiotis S, Strintzis M G. Object-based Coding of Stereo Image Sequences Using Three-Dimensional Models[J]. IEEE Trans on CSVT, 1997,7(6): 892-905.
  • 5Kanade T, Okutomi M. A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment[A]. Proc Image Understanding Workshop[C]. Califormia: IEEE, 1994. 383-389.
  • 6Ebroul M. Disparity/Segmentation Analysis: Matching with an Adaptive Window and Depth-driven Segmentation[J]. IEEE Trans on CSVT,1999,9(4):589-607.
  • 7Barnard S T, Fischler M A. Stereo Vision[A]. Encyclopedia of Artificial Intelligence[C]. New York: John Wiley, 1987. 1083-1090.
  • 8Okutomi M, Kanade T. A Locally Adaptive Window for Signal Matching[A]. Proc Int Conf Comput Vision[C]. Pittsburgh: IEEE,1990.

共引文献6

同被引文献19

  • 1谢琅,杨艳,曹阳,王立恒.一种改进的三步搜索块运动估计算法[J].武汉大学学报(理学版),2005,51(5):625-628. 被引量:5
  • 2SCHFER R.Review and Future Directions for 3D-Video[C]∥Proceedings of the Picture Coding Symposinm.Beijing,China:HeY,2006:1-11.
  • 3XING Ying-lin,FANG Lin.A Stereo Matching Method Based on Chain Code Vector[C]∥Computer Science and Engineering.Washington,DC,USA:IEEE,2009,1:372-375.
  • 4DANIEL SCHARSTEIN,RICHARD SZELISKI.A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms[J].International Journal of Computer Vision,2002,47(1/2/3):7-42.
  • 5BOYKOV Y,VEKSLER O,ZABIH R.Fast Approximate Energy Minimization Via Graph Cuts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11):1222-1239.
  • 6SUN J,SHUM H Y,ZHENG N N.Stereo Matching using Belief Propagation[J].IEEE Transactions,Pattern Analysis and Machine Intelligence,2002,25(7):787-800.
  • 7Sun J, Zheng N N, Shum H Y. Stereo matching using belief propagation[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2005,25 (7) :787-800.
  • 8Geman S, Geman D. Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images [ J ]. IEEE Trans Pattern Anal Machine Intell,1984,6(6) :721-741.
  • 9Weiss Y, Freeman W T. On the Optimality of Solutions of the Max- Product Belief Propagation Algorithm in Arbitrary Graphs [ J ]. IEEE Transaetions on Information Theory, 2001, 47(2) :736-744.
  • 10Donaldson K, Myers G K. Bayesian super-resolution of text in video with a textspecific bimodal prior [ J ]. IJDAR, 2005,7 (2-3) :159-167.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部