期刊文献+

稠密时间区间时序逻辑的可满足性判定 被引量:3

Decidability of the dense timed interval temporal logic
下载PDF
导出
摘要 定义了稠密时间区间时序逻辑(DTITL),它是区间时序逻辑的一种实时扩充.通过定义DTITL无穷状态空间上的具有有限个数等价类的等价关系,把DTITL的连续状态模型离散化为一阶区间时序逻辑模型.定义了一套规则来构造DTITL公式对应的有界整数域上一阶区间时序逻辑子集SFO的公式,从而把DTITL的可满足性判定问题等价地转化成了SFO的判定问题.利用多个命题变量等价表示有界整数,把SFO的可满足性判定问题等价转换为可判定的命题区间时序逻辑的判定问题.解决了DTITL的可满足性判定问题. We present a dense timed interval temporal logic (DTITL) and exploit the decidability problem of DTITL. To do so, we define an equivalence relation with finite equivalence classes over state spaces of DTITL models. Using the equivalence relation, we can construct a discrete model of a subset of the first order interval temporal logic called SFO from a continuous DTITL model. A set of rules are also applied to construct SFO formulas from DTITL ones. Then the satisfiability of DTITL is equivalently transformed to the same problem for SFO. Since the decidability of SFO can be transformed to the satisfiability of the propositional interval temporal logic, so SFO is decidable. Thus, the satisfiability of DTITL can be proved to be decidable.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2007年第3期463-467,共5页 Journal of Xidian University
基金 国家自然科学基金资助项目(60373103) 国家自然科学基金重大资助项目(60433010) 博士点基金资助项目(20030701015)
关键词 实时系统 时序逻辑 模型检查 混合系统 real time systems temporal logic model checking hybrid systems
  • 相关文献

参考文献1

二级参考文献6

  • 1韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88. 被引量:423
  • 2韩京清.非线性状态误差反馈控制律──NLSEF[J].控制与决策,1995,10(3):221-225. 被引量:179
  • 3Li Zhong-hua, Chai Tian-you, Wen Chang-yun, et al. Robust out Tracking for Nonlinear Uncertain Systems[J]. Systems & Control Letters, 1995, 25(1): 53-61.
  • 4Wang Wei-hua, Sob C B, Chai Tian-you. Robust Stabilization of MIMO Nonlinear Time-varying Mismatched Uncertain Systems[J].Automatic, 1997, 33(12): 2197-2202
  • 5Wang W Y, Leu Y G, Hsu C C. Robust Adaptive Fuzzy-neural Control of Nonlinear Dynamical Systems Using Generalized Projection Update Law and Variable Structure Controller[J]. IEEE Trans on Systems, Man, and Cybernetlcs-Part B: Cybernetics, 2001, 31 (1):140-147.
  • 6韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23. 被引量:1009

共引文献2

同被引文献20

  • 1张海宾,段振华.多速率混合系统的符号化可达性分析[J].西安交通大学学报,2007,41(4):412-415. 被引量:2
  • 2Muller-Olm M, Chmidt D, Ateffen B. Model-checking: a Tutorial Introduction [C]//The 4th International Workshop on Next Generation Information Technology and Systems: Lecture Note in Computer Science 1649. Berlin: Springer, 1999: 330-354.
  • 3Katoen J P. Concepts, Algorithms, and Tools for Model Checking [M]. Friedrieh-Alexander University: Lecture Notes of the Course, 1999: 66-101.
  • 4Moszkowski B C. Executing Temporal Logic[D]. Cambrideg: Department of Computer Science, Cambridge Universityg, 1986.
  • 5Moszkowski B C. An Automata-Theoretic Completeness Proof for Interval Temporal Logic [C]//The 27th International Colloguium on Automata, Language, and Programming: Lecture Note in Computer Science 1853. Berlin: Springer, 2000 : 223-234.
  • 6Manna Z, Pnueli A. Temporal Logic of Reactive and Concurrent Systems[M]. Berlin: Springer-Verlag, 1992.
  • 7Clarke E, Emerson E, Sistla A. Automatic Verification of Finite State Concurrent System Using Temporal Logical Specification[J]. ACM Trans on Programming Language and Systems, 1986, 8(2): 244-263.
  • 8Moszkowski B. Executing Temporal Logic Programs[D]. Cambridge: Cambridge University, 1986.
  • 9Duan Z, Yang X, Koutny M. Framed Temporal Logic Programming[J]. Science of Computer Programming, 2008, 70 (1) : 31-61.
  • 10Duan Z. Temporal Logic and Temporal Logic Programming [M]. Beijing: Science Press, 2006.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部