期刊文献+

微分流形上的最优化算法 被引量:7

Optimization algorithms on differentiable manifolds
下载PDF
导出
摘要 指出了流形算法中利用测地线寻找最优解存在附加度量结构和计算复杂的问题,根据流形的局部与欧氏空间零点的开邻域光滑同胚这一性质,利用坐标变换把非线性等式约束优化问题转化为无约束优化问题,利用坐标变换而不是黎曼几何结构给出了函数取得极值的充分和必要条件,构造了一种映射梯度算法,并证明这种算法是线性收敛的. The problem of the descent algorithm along geodesic on Riemannian manifolds is provided. A technique for the optimization algorithm for the differentiable function on differentiable manifolds is given. The constrained optimization problem is converted to the unconstrained case with the special choices of coordinate transformation and the optimality condition for the constrained optimization problem is given. Moreover, a mapping gradient method is developed and linear convergence of the mapping gradient method is established.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2007年第3期472-475,480,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60574075)
关键词 微分流形 最优化算法 坐标变换 differentiable manifold optimization algorithms coordinate transformation
  • 相关文献

参考文献10

  • 1Gabay D.Minimizing a Differentiable Function over a Differential Manifold[J].Journal of Optimization Theory and Applications,1982,37(2):117-217.
  • 2Oweren B,Welfert W.The Newton Iteration on Lie Groups[J].BIT Numerical Mathematics,2000,40(1):121-145.
  • 3Mathony R,Manton J H.The Geometry of the Newton Method on Non-compact Lie Groups[J].Journal of Global Optimization,2002,23(3-4):309-327.
  • 4Absol P A,Mathony R,Sepulchre R.Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation[J].Acta Applicandae Mathematicae,2004,80(2):199-220.
  • 5Chang H C.Optimizarion on Nonlinear Surface[D].West Lafayette:Purdue University,2000:6-28.
  • 6Yang Yaguang.Optimization on Riemannian Manifold[EB/OL].[2006-03-20].http://ieeexplore.ieee.org/xpls/abs-all.jsp?arnumber=832905.
  • 7Smith S T.Geometric Optimization Methods for Filtering Adaptive[D].Cambridge:Harvard University,1993:7-63.
  • 8陈维桓,李兴校.黎曼几何引论[M].北京:北京大学出版社,2002.
  • 9Yu Guolin,Liu Sanyang.The Condition for Generalized Saddle Points for Multiobjective Optimization Problems in Topological[J].Journal of Xidian University,2006,33(3):491-494.
  • 10袁亚湘,孙文瑜.最优化理论与[M].北京:科学出版社,2001:56-68.

共引文献18

同被引文献62

  • 1梁志远,贺贵明,吴元保.计算机视觉测量堆料体积中的摄像机定标方法[J].计算机应用研究,2004,21(10):134-135. 被引量:7
  • 2张振跃,查宏远.Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,8(4):406-424. 被引量:73
  • 3周彦,邓磊.多值一般混合似变分不等式的可解性[J].西南师范大学学报(自然科学版),2005,30(6):952-955. 被引量:7
  • 4梅向明,黄敬之.微分几何[M].2版.北京:高等教育出版社,1988:56-178.
  • 5Oweren B,Welfert B.The newton iteration on lie groups[J].BIT Numerical Mathematics,2000,10( 1): 121 - 145.
  • 6Mathony R,Jonathan M H.The geometry of the Newton method on non-compact lie groups[J].Journal of Global Optimization, 2002, 23(3):309-327.
  • 7Absol P A, Mathony R, Sepulchre R. riemannian geometry of Grassmann manifolds with a view on algorithmic[J].Computation, Acta Applicandae Mathematicae,2004,80(2): 199-220.
  • 8Krishnan S,Lee P Y, Moore J B. Optimization-on-a-manifold for global registration of multiple 3D point sets [J]. International Journal of Intelligent Systems Technologies and Applications, 2007,3(3-4):319-340.
  • 9Brandao A J, Rojas M M, Silva G N. Optimality conditions for pareto nonsmooth nonconvex programming in Banach spaces [ J ]. Journal of Optimization Theoryand Applications, 1999,103 ( 1 ) :65 - 73.
  • 10Kim D S, Sehaible S. Optimality and duality for invex nonsmooth multiobjective programming problems [ J ]. Optimization, 2004,53 (2) : 165 - 176.

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部