期刊文献+

HAP/UHMWPE对称分布复合功能生物材料的研究 被引量:2

Researches on HAP/UHMWPE symmetrical functionally biomaterial
下载PDF
导出
摘要 通过自制模具获得羟基磷灰石(HAP)/超高分子量聚乙烯(UHMWPE)复合功能材料,在此基础上通过层叠法获得5层HAP含量不同的对称分布的功能材料,HAP含量(体积分数)按40%→20%→0%→20%→40%呈对称分布。通过SEM、X射线、DSC以及力学测试,分析了复合材料的微观结构和力学性能。在此基础上通过SEM-EDX分析了5层对称分布复合材料的微观结构和元素含量。结果表明,随着HAP加入量的增加,复合材料的拉伸强度和抗弯强度均下降,而弹性模量随体积比增加而增加。UH-MWPE通过其超长分子链获得网状结构,起着骨架作用,而HAP被包裹在UHMWPE超长细链形成的层层网状结构之中,HAP和UHMWPE之间只是机械混合在一起。5层HAP/UHMWPE复合材料的层与层之间界面清晰但紧密连接在一起,而HAP含量在界面并没有形成梯度变化。 Hydroxyapatite (HAP)/ultra high molecular weight polyethylene (UHMWPE) functionally biomaterials were successfully fabricated using self-made mould, and 5 symmetrical functionally layered HAP/UHMWPE biomaterial was prepared through method of superposition, whereas stepwise change of volume fraction of HAP according to 40 %→20 %→0 %→20 %→40 % can be corresponded in the layered biomaterial. Microstructure characteristics and mechanical properties of HAP/UHMWPE biomaterials were studied by SEM observation, X-ray analyses, DSC analyses, tensile, bending strength and elastic modulus measurement. It is found that with the increase of volume fraction of HAP, the tensile and bending strength of the material all decreased, but the elastic modulus of the material increased. UHMWPE afforded the mechanical strength of the material through mesh structures formed by its super long molecular chain, HAP particles were wrapped in the layer mesh structure formed by UHMWPE, HAP and UHMWPE were simply mixed with each other. Interfaces among layers were distinct in HAP/UHMWPE symmetrical layered material but tightly connected with each other, HAP particles on the interfaces among layers were not gradient.
出处 《功能材料》 EI CAS CSCD 北大核心 2007年第6期976-979,共4页 Journal of Functional Materials
基金 国家高技术研究发展计划(863计划)资助项目(2003AA302210) 湖南省自然科学基金资助项目(05JJ3083) 中南大学创新工程基金资助项目(030615)
关键词 羟基磷灰石 超高分子量聚乙烯 层叠法 复合生物材料 hydroxyapatite ultra high molecular weight polyethylene laminating biomaterial
  • 相关文献

参考文献10

  • 1Fang Liming,Leng Yang,Gao Ping.[J].Biomaterials,2006,27(20):3701-3707.
  • 2Fang Liming,Leng Yang,Gao Ping.[J].Biomaterials,2005,26(17):3471-3478.
  • 3Ruan S L,Gao P,Yang X G,et al.[J].Polymer,2003,44(19):5643-5654.
  • 4Knets I V,Bunina L O,Filipenkov V V.[J].Mekhanika Kompozitnykh Materialov,1993,29(2):240-250.
  • 5Wang M,Bonfield W.[J].Biomaterials,2001,22(11):1311-1320.
  • 6Wang M,Chandrasekaran M,Bonfield W.[J].Journal of Materials Science:Materials In Medicine,2002,13(6):607-611.
  • 7Nazhat S N,Joseph R,Wang M,et al.[J].Journal of Materials Science:Materials in Medicine,2000,11(10):621-628.
  • 8Wang M,Deb S,Bonfield W.[J].Materials Letters,2000,44:119-124.
  • 9Huang J,Di Silvio L,Wang M,et al.[J].Journal of Materials Science:Materials in Medicine,1997,8(12):775-779.
  • 10Wang M,Joseph R,Bonfield W.[J].Biomaterials,1998,19(24):2357-2366.

同被引文献39

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部