期刊文献+

三维Minkowski空间中二次曲面的分类

Classification of Quadratic Surfaces in 3D Minkowski Space
下载PDF
导出
摘要 研究了二次曲面绕不同坐标轴旋转后再进行平移变换下的不变量,根据这些不变量来研究二次曲面的等价类,达到分类的目的.在三维Minkowski空间中,二次曲面的变换有旋转和平移,旋转又分为在正交标架下绕类空轴、类时轴的旋转和在伪正交标架下绕类光轴的旋转,在不同的旋转变换下有不同的不变量,分类结果也不同. Discusses the invariants of quadratic surfaces after they rotate around different coordinate axes then translate parallel in the three dimensional Minkowski space. According to these invariants, the equivalent classes of the quadratic surfaces are defined for classification. It is revealed that in the 3D Minkowski space the transformation of quadratic surface includes around both parallel translation and rotation which comprises space-like and time-like axes within orthogonal frame and that around null-like axes within pseudo-orthogonal frame, where different rotation transformation results in different invariants and classification.
机构地区 东北大学理学院
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第6期898-901,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(10371013)
关键词 MINKOWSKI空间 LORENTZ变换 二次曲面 分类 不变量 Minkowski space Lorentz transformation quadratic surface classification invariant
  • 相关文献

参考文献10

  • 1Ayyildiz N,Coken A C,Yucesan A.Differential-geometrical conditions between geodesic curves and ruled surfaces in the Lorentz space[J].Balkan Journal of Geometry and Its Applications,2002,7(1):13-32.
  • 2Houh C S.Rotation surfaces of finite type[J].Algebras Groups and Geometries,1990,7:199-209.
  • 3Sahin B,Kilic E,Gunes R.Null helices in R31[J].Differential Geometry-Dynamical Systems,2001,3(2):31-36.
  • 4Chern S S,Wolfson J G.Minimal surfaces by moving frames[M].Berlin:Springer-Verlag,1982:59-83.
  • 5Ekmekci N,Ilarslan N.On Bertrand curves and their characterization[J].Differential Geometry-Dynamical Systems,2001,3(2):17-24.
  • 6Delaunay C.Sur la surface de revolution don't la corbure moyenneest constante[J].J Math Pures Appl,1841,62:309-320.
  • 7Kenmotsu K.Surfaces of revolution with perscribed mean curvature[J].Tohoku Math J,1980,32:147-153.
  • 8Kenmotsu K.Surface of revolution with periodic mean curvature[J].Tohoku Math J,2002,54:1-11.
  • 9Takahashi T.Minimal immersions of Riemannian manifolds[J].J Math Soc Japan,1966,18(4):380-385.
  • 10Do Carmo M,Dajczer M.Rotation hypersurface of constant curvature[J].Transaction of the American Mathematical Society,1983,277(2):685-709.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部