期刊文献+

求解任意多边形区域二维偏微分方程的小波精细积分法 被引量:3

Wavelet precise integration method for 2D partial differential equations in polygon domain
下载PDF
导出
摘要 张量积小波数值法方法具有自适应性和较高的精度,但只适合求解定义在矩形区域的偏微分方程。将小波精细积分法与虚拟区域法相结合,构造了一种求解定义在任意多边形区域的二维偏微分方程的新小波数值方法。小波函数的紧支撑性降低了虚拟区域法的计算工作量。该方法可为求解定义在不规则区域上的工程动力学模型提供参考。 The tensor wavelet numerical method possesses the self-adaptability and higher precision. But it is suitable to the problems only restricted to partial differential equations defined in rectangle domain. A kind of new wavelet numerical method for solving 2D partial differential equations in polygon domain is proposed. Based on the combination wavelet precise integration method with the fictious domain method. In this method, the compact support property improves the calculation efficiency of the fictious domain method, which is helpful to solving the dynamic model in engineering such as the rill erosion model.
出处 《中国农业大学学报》 CAS CSCD 北大核心 2007年第3期81-84,共4页 Journal of China Agricultural University
基金 国家自然科学基金资助项目(10372036) 中国农业大学科研启动基金(2005037)
关键词 小波 精细积分 虚拟区域 偏微分方程 wavelet precise integration method fictious domain partial differential equation
  • 相关文献

参考文献8

  • 1Hafzullah A,Kavvas M L.A review of hillslope and watershed scale erosion and sediment transport models[J].Catena,2005,64,247-271
  • 2Joris D,Vente T,Jean P.Predicting soil erosion and sediment yield at the basin scale:Scale issues and semi-quantitative models[J].Earth-Science Reviews,2005,71:95-125
  • 3Bernardi C,Girault V,Hecht F,et al.A finite element problem issued from fictitious domain techniques[J].East-West J Numer Math,2001,9 (4):253-263
  • 4Girault V,Glowinski R.Error analysis of a fictitious domain method applied to a dirichlet problem[J].Japan J Indust Appl Math,1995,12:487-514
  • 5Dahmen W.Wavelet methods for PDEs-Some recent developments[J].J Comput Appl Math,2001,128:133-185
  • 6庞守林,梅树立.水土侵蚀过程分析的小波精细积分法[J].农业机械学报,2006,37(10):124-126. 被引量:4
  • 7张兰霞,杨勇,梅树立.图像降噪的小波精细积分方法[J].农业机械学报,2006,37(7):109-112. 被引量:9
  • 8Wei G W.Quasi wavelet and quasi interpolating wavelets[J].Chemical Physics Letters,1998,296:215-222

二级参考文献8

共引文献8

同被引文献29

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部