期刊文献+

包含禁行路线路网的最优路径HNN算法 被引量:7

HNN Algorithm for Optimal Path of Road Network with Restricted Routes
下载PDF
导出
摘要 为了解决包含禁行路线路网的最优路径快速求解问题,研究了不含禁行路线路网和包含禁行路线路网的特点,建立了相应的路网数学模型。通过路网转化法把包含禁行路线的路网转化为不含禁行路线的路网,降低了最优路径求解的难度。研究了霍普费尔特神经网络(Hopfield Neural Network,HNN)的特点,设计了适合求解路网最优路径的HNN算法,在算法中采用动态邻接矩阵,节省了计算机内存,减少了运算时间。将所研究的路网转化方法和设计的HNN算法应用于所研发的车辆诱导系统中,并进行了实际路网测试,结果表明应用该方法能够在包含禁行路线路网中求解最优路径,且比经典算法的运算效率高。 In order to solve the problem of fast computing optimal path in road network with restricted routes, characteristics of road network without and with restricted routes are analyzed, and the corresponding mathematic models of road network are built. Road network with restricted routes is translated into road network without restricted routes according to the studied method, which reduced the complexity of the optimal path solution.The characteristics of HNN (Hopfield neural network) are analyzed, and a HNN algorithm to solve optimal path in road network according to the characteristics of Hopfield neural network is designed. The method for transforming road network and the HNN algorithm are applied to the studied vehicle guidance system to solve optimal path and are tested in the actual road network.Test results show that the methods can find correct optimal path in road network with restricted routes, and the HNN algorithm is more efficient in calculation than classical algorithms.
出处 《公路交通科技》 CAS CSCD 北大核心 2007年第6期97-101,共5页 Journal of Highway and Transportation Research and Development
基金 国家"十五"科技攻关资助项目(2002BA404A01) 山东省教育厅中青年学术骨干基金资助项目(A2002-107)
关键词 智能运输系统 路网 HNN算法 最优路径 车辆诱导系统 禁行路线 Intelligent Transport Systems road network Hopfield neural network algorithm optimal path vehicle guidance system restricted route
  • 相关文献

参考文献9

  • 1潘福全,王丰元,邹旭东,孙刚.基于道路网络数据库的最短路径搜寻[J].公路交通科技,2005,22(3):105-107. 被引量:11
  • 2刘灿齐.车流在交叉口分流向延误的最短路径及算法[J].同济大学学报(自然科学版),2002,30(1):52-56. 被引量:18
  • 3严尉敏,吴伟明.数据结构(C语言版)[M].北京:清华大学出版社,1997:186-190.
  • 4XAVIER P G.Shortest path planning for a tethered robot or an anchored cable[C] //Proceedings 1999 IEEE International Conference on Robotics and Autonation.Piscataway IEEE,1999:1 011-1 017.
  • 5EPHREMIDES A,VERDU S.Control and optimization methods in communication network problems[J].IEEE Transactions on Automatic Control,AC234,1989,34 (9):930-942.
  • 6DIJKSTRA E W.A Note on two Problems in Connection with Graphs[J].Numerical Mathematics,1959,1 (2):269-271.
  • 7殷人昆 陶永雷.数据结构[M].北京:清华大学出版社,1999..
  • 8HOPFIELD J J,TANK D W.Neural Computation of Decisions in Optimization Problem[J].Biolog Cybem,1985,52 (3):141-152.
  • 9SMITH K.Neural networks for combinatorial optimization:a review of more than a decade of research[J].INFORMS Journal on Computing,1999,11 (1):15-34.

二级参考文献5

共引文献49

同被引文献58

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部