期刊文献+

多传感器信息融合Wiener反卷积平滑器

Multi-sensor Information Fusion Wiener Deconvolution Smoother
下载PDF
导出
摘要 应用现代时间序列分析方法,基于ARMA新息模型和增广的状态空间模型,提出了按标量加权多传感器最优信息融合ARMA信号Wiener反卷积平滑器,给出了计算局部平滑器误差方差和互协方差的计算公式,它们可被用于计算最优加权系数.同单传感器情形相比,可提高融合平滑器的精度。一个仿真例子说明其有效性。 By the modern time series analysis methods, based on ARMA innovation model and augmented state space model, muhisensor optimal information fusion ARMA signal Wiener deconvolusion smoother weighted by scalars is proposed. The formulas of computing the local smoother error variances and cross-covariances are given, which are applied to compute optimal weights. Compared to the single sensor case, the accuracy of the fused smoother is improved. A simulation example shows its effectiveness.
作者 毛琳 邓自立
出处 《科学技术与工程》 2007年第13期3052-3056,共5页 Science Technology and Engineering
基金 黑龙江大学青年科学基金项目(QLZ00509) 黑龙江大学自动控制重点实验室基金资助
关键词 多传感器信息融合 反卷积 最优加权 Wiener反卷积平滑器 multisensor information fusion deconvolution optional weighted fusion Wiener deconvolusion smoother
  • 相关文献

参考文献4

  • 1[2]Sun Shu-Li,Deng Zi-Li.Multi-sensor information fusion optimal Kalman filter.Automatica,2004 ;40 (6):1017-1023
  • 2[3]Sun Shu-Li.Multi-sensor information fusion white noise filter weighted by scalars based Kalman predictor.Automatica,2004;40(8):1447-1453
  • 3[4]Grimble M J.Multichannel optimal linear deconvolution filters and strip thickness estimation from gauge measurements.Trans of ASME,Journal of Dynamic Systems,Measurement,and Control,1995;117(2):165-173
  • 4[5]Mendel J M.Optimal Seismic Deconvolution:An Estimation-Based Approach.New York:Academic Press,1983

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部