期刊文献+

共沉积Co_3O_4-石墨负极材料及其在锂离子电池中的循环性能 被引量:1

Co_3O_4-Graphite Negative Electrode Prepared by Co-Electrodeposition and Its Cycling Performance in Lithium-Ion Batteries
下载PDF
导出
摘要 在0.5 mol/L Co(NO3)2溶液中添加石墨粉,在铜箔集流体的表面电化学共沉积前驱体薄膜,然后在245℃真空热处理使之形成Co3O4-石墨粉复合负极材料。研究了共沉积Co3O4-石墨负极材料在锂离子电池中的循环性能。XRD分析和SEM观察表明,该电极材料结构由蜂窝状的Co3O4包覆石墨粉复合而成,Co3O4晶粒尺寸为0.7~2.2 nm。0.5C充放电倍率测试表明,在0.5 mol/L Co(NO3)2电解液中添加5%石墨粉形成的Co3O4-石墨复合材料负极的性能最好,该电极的初始充电比容量为872.7 mA.h/g,第20周循环的充电比容量为732.7mA.h/g,第50周循环的充电比容量为545.2 mA.h/g,比容量保持率分别为83.96%和62.47%;而纯Co3O4电极的初始充电比容量为665.3 mA.h/g,经过20次循环后充电比容量为407.9 mA.h/g,第50周循环的充电比容量为124.5mA.h/g,保持率仅分别为61.31%和18.31%。 Co3O4-graphite negative electrode materials was prepared by co-electrodepositing in precursor film 0. 5 mol/L Co ( NO3 ) 2 solution added with different content of graphite powders and then vacuum heat treated at 245 ℃. The cycling performance of the electrode materials was studied. The results show that the electrode materials is composed of Co3O4 and graphite phases with honeycomb structure ,in which average crystal size of Co3O4 is 0. 7 -2.2 nm. Charge-discharge tests at the current of 0.5C show that the best performance is obtained for the Co3O4-graphite composite negative elec- trode with the addition of 5% graphite powder. Its first charge specific capacity is 872. 7 mA.h/g. Its charge specific capacity after 20 cycles and 50 cycles are 732.7 mA. h/g and 545.2 mA. h/g, and capacity retention are 83.96% and 62. 47%, respectively. However, the first charge specific capacity of the pure Co3O4 is only 665.3 mA. h/g, and the capacity retention after 20 cycles and 50 cycles are 61.31% and 18.31% , respectively.
出处 《金属热处理》 EI CAS CSCD 北大核心 2007年第6期19-22,共4页 Heat Treatment of Metals
基金 北京市自然科学基金(2062014)
关键词 锂离子电池 Co3O4-石墨 共沉积 循环性能 lithium-ion battery Co3O4-graphite co-electrodeposition cycling performance
  • 相关文献

参考文献12

二级参考文献55

  • 1YU Weiping, LI Fan & MENG LinBeijing University of Aeronautics and Astronautics, Beijing 100083, China.ZrO_2 and ZrO_2-Y_2O_3 coatings deposited by double pulsed plasma arc[J].Chinese Science Bulletin,2002,47(3):252-254. 被引量:3
  • 2于维平,黄东,张世超,王丹,吴寒.电沉积-烧结制备Co_3O_4锂离子电池负极及电性能[J].材料热处理学报,2004,25(4):1-3. 被引量:5
  • 3何则强,李新海,熊利芝,吴显明,肖卓炳,麻明友.锂离子电池锡氧化物基负极材料的湿化学合成与电化学性质[J].无机化学学报,2005,21(2):176-180. 被引量:4
  • 4IDOTA Y, KUBOTA T, MATSUFUJI A, et al. Tin-based amorphous oxide: A high capacity lithium storage material[J]. Science,1997, 276:1305--1397.
  • 5KEPLER K D, VAUGHEY J T, THACKERAY M, et al.LixCu6Sn5 : An intermetallic insertion electrode for rechargeable lithium batteries [J ]. Electrochem Solid State Lett, 1999, 7:307--309.
  • 6TAKEDA Y. Lithium secondary batteries using a lithium cobalt nitride, Li2.6Co0.4N as the anode [J]. Solid State Ionics, 2000, 130:61--69.
  • 7MAO O, DUNLAP R A, DAHN J R, et al. Mechanical alloyed SnFe(-C)powers as anode materials for Li-ion batteries. 1.The Sn2FeC system [J]. J Electrochem Soc, 1999, 146:405--413.
  • 8COURTNEY I A, MICKINNON W R, DAHN J R, et al. On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium [J]. J Electrochem Soc, 1999, 146:59---68.
  • 9WANG C S, WU G T. Lithium insertion in carbon-sillcon composition materials produced by mechanical milling [ J ]. J Electrochem Soc, 1998, 145(8):2751--2758.
  • 10BUFFAT P, BOREL J P. Size effect on the melting temperature of gold particles [J]. Phys Rev, 1976, A 13:2287--2292.

共引文献39

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部