期刊文献+

一类含奇性权p-Laplace方程正解的存在性

Existence of Positive Solution for a p-Laplace Equation with Singular Weight
下载PDF
导出
摘要 利用Sobolev-Hardy不等式和山路引理,讨论了一类包含奇性权p-Laplace方程在具有光滑边界开集上正解的存在性. The authors discuss the existence of positive solution for a p-Laplace equation with singular weight by using Sobolev-Hardy inequality and the Mountain Pass Lemma.
出处 《吉首大学学报(自然科学版)》 CAS 2007年第2期19-24,共6页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10171032) 广东省自然科学基金资助项目(011606)
关键词 P-LAPLACE方程 SOBOLEV-HARDY不等式 集中紧原理 山路引理 正解 p-Laplace equation Sobolev-Hardy inequality concentration-compactness lemma Mountain Pass Lemma positive solution
  • 相关文献

参考文献9

  • 1CHEN J Q,LI S J.On Mutiple Solutions of Singular Quasilinear Equation on Ounded Domains[J].J.Math.Anal.Appl.,2002,275:733-746.
  • 2WANG Z Q,WILLEM M.Singular Minimization Problems[J].J.Differential Equations.,2002,161:307-320.
  • 3AZORERO J G,ALONSO I P.Multiplicity of Solutions for Elliptic Problems with Critical Exponent or with a Nonsymmetric Term[J].American Math.Soc.,1991,323(2):877-895.
  • 4BREZIS H,NIRENBERG L.Positive Solutions of Nonlinear Elliptic Equation Involving Critical Sobolev Exponents[J].Comm.Pure Appl.Math.,1983,36:437-477.
  • 5EGNELL H.Elliptic Boundary Value Problem with Singular and Critical Nonliearities[J].Indiana Univ.Math.J.,1989,38(2):235-251.
  • 6CHOU K S,CHU C W.On the Best Constant for a Weighted Sobolev-Hardy Inequality[J].J.London Math.Soc.,1993,48(2):137-151.
  • 7LINOS P L.The Concentration-Compactness Principle in the Caculus of Varations,Part I and Part II[J].Rev.Iberoamericana,1985,1:141-201.
  • 8STRUWE M.Variational Methods,Application to Nonlinear Partial Differential Equations and Hamiltonian System[M].Springer,Berlin,1996.
  • 9XUAN B J.The Solvability of Qusilinear Brezis-Nirenberg-Type Problem with Singular Weight[J].Nonlinear.Anal.,2005,62:703-725.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部