期刊文献+

有限个严格压缩映像隐迭代格式的逼近(英文)

Convergence Theorems of an Implicit Iteration for a Finite Family of Strictly Pseudo-contractive Mappings
下载PDF
导出
摘要 假设E为一致凸的Banach空间,对偶空间E*有Kadec-Klee性质,K为E的非空闭凸子集{Ti:i=1,2,…,N}:K→K为Browder-Petryshyn意义下的严格伪压缩映像且F=∩Ni=1F(Ti)≠0.{αn}n∞=1满足0<aαnb<1.定义Si=(1-δ)I+δTi(i=1,2,…,N),这里I代表恒等映像而δ∈(0,1).定义{xn}如下xn=αnxn-1+(1-αn)Snxn,n1,这里Sn=Sn(modN).则{xn}弱收敛于{Si}Ni=1的公共不动点. Suppose E is a uniformly property. Let K be a nonempty closed convex convex Banach space and its dual space E^* has Kadec-Klee subset of E and Ti :K → K (i = 1,2,… ,N) be strictly N pseudo-contractive mappings in the terminology of Browder-Petryshyn such that F = ∩i=1^N F(Ti) ≠Ф, and let {αn}n=1^∞ be a sequence satisfying the conditions 0 〈 a ≤ a≤ b 〈 1. Define mappings Si = (1 - δ)I + δTi (i = 1,2, …… ,N), wbere I denotes the identity mapping. Let x0 E ∈ and {xn} be defined by xn=anxn -1 + (1-an)Snxn ,n≥ 1, where Sn = Sn(modN). Then {xn} converges weakly to a common fixed point of mappings {Si}i=1^N.
机构地区 华北电力大学
出处 《应用泛函分析学报》 CSCD 2007年第2期106-111,共6页 Acta Analysis Functionalis Applicata
基金 Supported by National Natural Science Foundation of China Grant(10471033)
关键词 隐迭代格式 严格伪压缩映像 一致凸BANACH空间 公共不动点 弱收敛 Implicit iteration strictly pseudo-contractive mappings uniformly convex Banach space weak convergence
  • 相关文献

参考文献13

  • 1Xu H K, Ori R. An implicit iterative process for nonexpansive mappings[J]. Numer Funct Anal Optim, 2001,22:767--773.
  • 2Oslike M O. Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps[J]. J Math Anal Appl, 2004,294:73--81.
  • 3Chidume C E, Naseer Shahazad. Strong convergence of an implicit process for a finite family of nonexpansive mappings[J]. Nonlinear Anal, 2005,62 : 1149--1156.
  • 4Chen R D, Song Y S, Zhou H Y. Convergence theorems for implicit iteration process for a finite family of continuous pseudo-contractive mappings[J]. J Math Anal Appl, 2006,314:701--709.
  • 5Zhou Y, Chang S S. Convergence of implicit iteration process for a finite family of asymptotically nonexpansive mappings in Banach spaces[J]. Numer Funct Anal Appl, 2002,23:911--921.
  • 6Sun Z H. Strong convergence of an implicit iteration process for a finite family of asymptotically quasinonexpansive mappings[J].J Math Appl, 2003,286 :351--358.
  • 7Chang S S, Tan K K, Lee H W J, Chi Kin Chan. On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings[J]. J Math Anal Appl. (to appear)
  • 8Diestel J. Geometry of Banach Spaces-Selected Topics[M]. Lecture Notes in Mathematics, Vol. 485 Springer, New York, 1975.
  • 9Morales C H, Jung J S. Convergence of paths for pseudo-contractive mappings in Banach spaces [J]. Proc Amer Math Soc, 2000,128:3411--3419.
  • 10Martin R H. Differential equations on closed subsets of a Banach space[J]. Trans Amer Math Soc, 1973, 179:399--414.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部